

Oracle® Fusion Middleware
Getting Started with Oracle Event Processing

12c Release (12.1.3.0)

E28542-01

May 2014

How to get started with developing Oracle Event Processing
applications.

Oracle Fusion Middleware Getting Started with Oracle Event Processing, 12c Release (12.1.3.0)

E28542-01

Copyright © 2007, 2014 Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

What's New in This Guide .. ix

1 Oracle Event Processing Overview

1.1 Oracle Event Processing... 1-1
1.2 Application Programming Model .. 1-2
1.3 Component Roles in an Event Processing Network.. 1-3
1.4 Oracle CQL .. 1-3
1.5 Technologies in Oracle Event Processing.. 1-4
1.6 Oracle Event Processing High-Level Use Cases... 1-5

2 Oracle JDeveloper Quick Reference

2.1 Setting Accessibility Options... 2-1
2.2 Oracle Event Processing Support ... 2-1
2.3 Open Oracle JDeveloper Windows .. 2-2
2.4 Create an Oracle Event Processing Project.. 2-2
2.5 Project Templates .. 2-2
2.6 Assembly and Component Configuration Files ... 2-3
2.7 Set the Path to Project Source Files... 2-3
2.8 Perform Project-Level Actions .. 2-3
2.9 Import a Zip or JAR file ... 2-4
2.10 EPN Diagram Features... 2-4
2.11 Components Window .. 2-6
2.12 Context Menus .. 2-8

3 Oracle JDeveloper Procedures

3.1 Import an Eclipse Project into Oracle JDeveloper.. 3-1
3.2 Add a Library to a Project.. 3-5
3.3 Create an Application Library .. 3-6

iv

3.4 Assembly and Configuration Files ... 3-6
3.4.1 Create an Assembly File ... 3-7
3.4.2 Create a Component Configuration File .. 3-7
3.4.3 Add Components to a Configuration File.. 3-8
3.4.4 Add Configuration Settings to a Component.. 3-8
3.5 Configure a Relation Channel... 3-9
3.6 Configure an Application Time-Stamped Channel ... 3-9
3.7 Create and Register a JavaBean Event Type .. 3-10
3.8 Create and Register a Tuple Event Type .. 3-11
3.9 Create an Event Bean... 3-11
3.10 Create a Spring Bean ... 3-12
3.11 Configure a Table Source.. 3-13
3.12 Configure a Table Sink.. 3-15
3.13 Use Oracle CQL Patterns .. 3-15
3.14 Configure an Oracle Coherence Caching System and Cache.. 3-18
3.15 Configure a Local Caching System and Cache.. 3-22
3.16 Debug Java Classes .. 3-23
3.16.1 Debug on a Local Oracle Event Processing Server .. 3-23
3.16.2 Remote Oracle Event Processing Server.. 3-26
3.17 Testing with the Event Inspector Service ... 3-26
3.18 Start and Stop Oracle JDeveloper and Servers .. 3-28

4 Create a Basic Application

4.1 About the Basic Application.. 4-1
4.2 Before You Begin... 4-2
4.3 Create the Application ... 4-2
4.4 TradeReport Project Files... 4-3
4.5 Create an Event Type to Carry Event Data ... 4-4
4.6 Add the csvgen Adapter to Receive Simulated Event Data ... 4-6
4.7 Add an Output Channel to Convey Events .. 4-8
4.8 Create a Listener Event Sink to Receive and Report Events... 4-9
4.9 Add an Oracle CQL Processor to Filter Events ... 4-11
4.10 Add an Output Channel ... 4-12
4.11 Deploy ... 4-13
4.12 Set Up and Start the Load Generator .. 4-16
4.13 Stop the Load Generator and the Server .. 4-17

5 Create a Fraud Detection Application with EDN Adapters

5.1 Fraud Detection Scenario... 5-1
5.2 Before You Begin... 5-1
5.3 Event Delivery Network Walkthrough ... 5-2
5.3.1 Start Oracle WebLogic Server .. 5-2
5.3.2 Copy the Artifacts Folder ... 5-2
5.3.3 Create an Oracle Event Processing Domain .. 5-3
5.3.4 Create a Java Message Service Topic .. 5-4
5.3.5 Start the Oracle Event Processing Server ... 5-5
5.3.6 Use Oracle JDeveloper to Create An Oracle Event Processing Application............... 5-6

v

5.3.7 Deploy the Application with JDeveloper.. 5-13
5.3.8 Create and Deploy the Sample SOA Composite.. 5-15
5.3.9 Test the Fraud Detection Application.. 5-17

6 Create an Order Tracking Application with QuickFix Adapter

6.1 Order Tracking Example Application.. 6-1
6.2 Test the Example Application ... 6-4

7 Oracle Event Processing Samples

7.1 About the Samples.. 7-1
7.1.1 Ready-to-Run Samples.. 7-2
7.1.2 Sample Source .. 7-2
7.2 Environment Setup... 7-3
7.3 Use Oracle Event Processing Visualizer with the Samples .. 7-3
7.4 Increase the Performance of the Samples .. 7-4
7.5 HelloWorld Example.. 7-4
7.5.1 Run the HelloWorld Example from the helloworld Domain.. 7-4
7.5.2 Build and Deploy the HelloWorld Example from the Source Directory..................... 7-5
7.5.3 Description of the Ant Targets to Build Hello World .. 7-6
7.5.4 Implementation of the HelloWorld Example .. 7-6
7.6 Oracle Continuous Query Language Example... 7-7
7.6.1 Run the CQL Example .. 7-8
7.6.2 Build and Deploy the CQL Example .. 7-9
7.6.3 Description of the Ant Targets to Build the CQL Example .. 7-10
7.6.4 Implementation of the CQL Example.. 7-10
7.6.4.1 Create the Missing Event Query ... 7-10
7.6.4.2 Create the Moving Average Query... 7-30
7.7 Oracle Spatial Example ... 7-62
7.7.1 Run the Oracle Spatial Example ... 7-63
7.7.2 Build and Deploy the Oracle Spatial Example ... 7-66
7.7.3 Description of the Ant Targets to Build the Oracle Spatial Example........................ 7-67
7.7.4 Implementation of the Oracle Spatial Example.. 7-67
7.8 Foreign Exchange (FX) Example.. 7-68
7.8.1 Run the Foreign Exchange Example .. 7-69
7.8.2 Build and Deploy the Foreign Exchange Example from the Source Directory 7-70
7.8.3 Description of the Ant Targets to Build FX... 7-71
7.8.4 Implementation of the FX Example ... 7-71
7.9 Signal Generation Example .. 7-72
7.9.1 Run the Signal Generation Example .. 7-73
7.9.2 Build and Deploy the Signal Generation Example from the Source Directory 7-75
7.9.3 Description of the Ant Targets to Build Signal Generation.. 7-76
7.9.4 Implementation of the Signal Generation Example .. 7-76
7.10 Event Record and Playback Example ... 7-77
7.10.1 Run the Event Record/Playback Example.. 7-78
7.10.2 Build and Deploy the Event Record/Playback Example.. 7-83
7.10.3 Description of the Ant Targets to Build the Record and Playback Example 7-84

vi

7.10.4 Implementation of the Record and Playback Example... 7-84

Glossary

vii

Preface

This document provides general background information and detailed code samples
to help you learn about Oracle Event Processing and the Oracle CQL.

Audience
This document is intended for users interested in learning about Oracle Event
Processing and Oracle CQL. Readers should be familiar with basic Java development.
Some knowledge of SQL would be helpful.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following:

■ Oracle Fusion Middleware Getting Started with Oracle Event Processing

■ Oracle Fusion Middleware Developing Application for Oracle Event Processing

■ Oracle Fusion Middleware Administering Oracle Event Processing

■ Oracle Fusion Middleware Using Visualizer for Oracle Event Processing

■ Oracle Fusion Middleware Oracle CQL Language Reference for Oracle Event Processing

■ Oracle Fusion Middleware Schema Reference for Oracle Event Processing

■ Oracle Fusion Middleware Developing Applications with Oracle CQL Data Cartridges

■ Oracle Fusion Middleware Customizing Oracle Event Processing

■ Oracle Fusion Middleware Java API Reference for Oracle Event Processing

viii

■ Oracle Fusion Middlewareg Getting Started with Oracle Event Processing on Oracle Java
Embedded Systems

■ Oracle Database SQL Language Reference at
http://docs.oracle.com/cd/E16655_01/server.121/e17209/toc.htm

■ SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO/IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

■ Oracle Event Processing Forum:
http://forums.oracle.com/forums/forum.jspa?forumID=820

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ix

What's New in This Guide

This guide has been updated for the 12c Release. The following table lists the sections
that have been added or changed.

Sections Changes Made

Entire Guide Product renamed to Oracle Event Processing.

Chapter 2, Oracle JDeveloper Quick
Reference, and Chapter 3, Oracle
JDeveloper Procedures

Application development procedures have been updated to use Oracle
JDeveloper instead of Eclipse. All IDE procedures and information are
aggregated into these two chapters.

Chapter 4, Create a Basic Application Moved this walkthrough here from Oracle Fusion Middleware
Developing Application for Oracle Event Processing and updated to use
Oracle JDeveloper.

Chapter 5, Create a Fraud Detection
Application with EDN Adapters

Added this walkthrough to illustrate SOA integration with EDN
adapters.

Chapter 6, Create an Order Tracking
Application with QuickFix Adapter.

Added this walkthrough to illustrate the QuickFix adapter, which is a
full-featured messaging engine for handling the real-time electronic
exchange of securities transactions according to the Financial
Information eXchange (FIX) standard.

Chapter 7, Oracle Event Processing
Samples

Moved here from Oracle Fusion Middleware Developing Application
for Oracle Event Processing to form a complete set of examples and
walkthroughs.

x

1

Oracle Event Processing Overview 1-1

1Oracle Event Processing Overview

Oracle Event Processing is a high throughput and low latency platform for
developing, administering, and managing applications that monitor real-time
streaming events.

This guide introduces you to Oracle Event Processing and Oracle JDeveloper for
application development. The step-by-step walkthroughs and sample applications
provide a solid foundation for understanding how the parts of the platform work
together and how to create an Oracle Event Processing application.

This chapter covers the following topics:

■ Section 1.1, "Oracle Event Processing"

■ Section 1.2, "Application Programming Model"

■ Section 1.3, "Component Roles in an Event Processing Network"

■ Section 1.4, "Oracle CQL"

■ Section 1.5, "Technologies in Oracle Event Processing"

■ Section 1.6, "Oracle Event Processing High-Level Use Cases"

1.1 Oracle Event Processing
Oracle Event Processing consists of the Oracle Event Processing server, Oracle Event
Processing Visualizer, a command-line administrative interface, and the Oracle
JDeveloper Integrated Development Environment (IDE).

An Oracle Event Processing server hosts logically related resources and services for
running Oracle Event Processing applications. Servers are grouped into and managed
as domains. A domain can have one server (standalone-server domain) or many
(multiserver domain). You manage the Oracle Event Processing domains and servers
through Oracle Event Processing Visualizer and the Oracle Event Processing
administrative command-line interface.

Oracle Event Processing Visualizer is a web-based user interface through which you
can deploy, configure, test, and monitor Oracle Event Processing applications running
on the Oracle Event Processing server.

Oracle Event Processing administrative command-line interface enables you to
manage the server from the command line and through configuration files. For
example, you can start and stop domains and deploy, suspend, resume, and uninstall
an application.

Oracle JDeveloper for the 12c release includes an integrated framework that supports
Oracle Event Processing application design, development, testing, and deployment.

Application Programming Model

1-2 Getting Started with Oracle Event Processing

1.2 Application Programming Model
An Oracle Event Processing application receives and processes data streaming from an
event source. That data might be coming from one of a variety of places, such as a
monitoring device, a financial services company, or a motor vehicle. While monitoring
the data, the application might identify and respond to patterns, look for events that
meet specified criteria and alert other applications, or do other work that requires
immediate action based on quickly changing data.

Oracle Event Processing uses an event-driven architecture called SEDA where an
application is broken into a set of stages (nodes) connected by queues. In Oracle Event
Processing, the channel component represents queues while all of the other
components represent stages. Every component in the EPN has a role in processing the
data.

The event processing network (EPN) is linear with data entering the EPN through an
adapter where it is converted to an event. After the conversion, events pass through
the stages from one end to the other. At various stages in the EPN, the component can
execute logic or create connections with external components as needed.

Figure 1–1 Oracle Event Processing Application

Oracle Event Processing applications have the following characteristics:

■ Applications leverage the database programming model: Some of the
programming model in Oracle Event Processing applications is conceptually an
extension of what you find in database programming. Events are similar to
database rows in that they are tuples against which you can execute queries with
Oracle Continuous Query Language (Oracle CQL). Oracle CQL is an extension to
SQL, but designed to work on streaming data.

■ Stages represent discrete functional roles: The structure of an EPN enables you to
execute logic against events flowing through the network. Stages also enable you
to capture multiple processing paths with a network that branches into multiple
downstream directions based on event patterns that your code finds.

■ Stages transmit events through an EPN by acting as event sinks and event
sources: The stages in an EPN can receive events as event sinks and send events as
event sources. An event sink is a Java class that implements logic to listen for and
work on specific events.

■ Events are handled as streams or relations: Channels convey events from one
stage to another in the EPN. A channel can convey events in a stream or in a
relation. Both stream and relation channels insert events into a collection and send
the stream to the next EPN stage. Events in a stream can never be deleted from the
stream. Events in a relation can be inserted into, deleted from, and updated in the
relation. For insert, delete, and update operations, events in a relation must always
be referenced to a particular point in time.

Oracle CQL

Oracle Event Processing Overview 1-3

1.3 Component Roles in an Event Processing Network
The core of Oracle Event Processing applications is the EPN. You build an EPN by
connecting components that have a role in processing events that pass through the
network. When you develop an Oracle Event Processing application, you identify
which kinds of components are needed to achieve the desired functionality.

The best way to create an EPN is to use Oracle JDeveloper to add, configure, and
connect the components. The EPN has a roughly linear shape where events enter from
the left, move through the EPN to the right, and exit or terminate at the far right.

The EPN components provide ways to:

■ Exchange event data with external sources: You can connect external databases,
caches, HTTP messages, Java Message Service (JMS) messages, files, and big data
storage to the EPN of your application to add ways for data, including event data,
to pass into or out of the EPN.

■ Model event data as event types so that it can be handled by application code:
You implement or define event types that model event data so that application
code can access and manipulate it.

■ Query and filter events: Oracle CQL enables you to query events as you would
data in a database. Oracle CQL includes features specifically intended for
querying streaming data. You can add Oracle CQL code to an EPN by adding a
processor component. All EPN processors are Oracle CQL processors.

■ Execute Java logic to handle events: You can add Java classes that send and
receive events the same way that other EPN stages do. Logic in these classes can
retrieve values from events, create new events, and more.

1.4 Oracle CQL
Oracle CQL is an extension to Structured Query Language (SQL) with the same
keywords and syntax rules, but with features to support the unique aspects of
streaming data.

An event conceptually corresponds to a row in a database table. However, an
important difference between an event and a table row is that with events, one event is
always before or after another in time, and the stream is potentially infinite and
ever-changing.

With a relational database, data is relatively static and changes when a user initiates a
transaction such as an add, delete, or change operation. In contrast, event data streams
constantly flow into the EPN where your query examines it as it arrives.

To make the most of the sequential, time-oriented quality of streaming data, Oracle
CQL enables you to do the following:

■ Specify a window of a particular time period or range from which events should
be queried. This could be for every five seconds worth of events, for example.

■ Specify a window of a particular number of events, called rows, against which to
query. This might be every sequence of 10 events.

■ Specify how often the query should execute against the stream. For example, the
query could slide every five seconds to a later five-second window of events.

■ Separate (partition) an incoming stream into multiple streams based on specified
event characteristics. You could have the query create new streams for each of the
specified stock symbols found in incoming trade events.

Technologies in Oracle Event Processing

1-4 Getting Started with Oracle Event Processing

In addition, Oracle CQL supports common aspects of SQL that you might be familiar
with, including views and joins. For example, you can write Oracle CQL code that
performs a join that involves streaming event data and data in a relational database
table or cache.

Oracle CQL is extensible through data cartridges, with included data cartridges that
provide support for queries that incorporate functionality within Java classes. For
example, there is data cartridge support for spatial calculations and JDBC queries. The
spatial data cartridge supports a large number of moving objects, such as complex
polygons and circles, 3D positioning, and spatial clustering.

1.5 Technologies in Oracle Event Processing
Oracle Event Processing is made up of the following standard technologies that
provide functionality for developing application logic and for deploying and
configuring applications.

■ Java programming language: Much of the Oracle Event Processing server
functionality is written in the Java programming language. Java is the language
you use to write logic for event beans and Spring beans.

■ Spring: Oracle Event Processing makes significant use of the Spring configuration
model. Spring is a collection of technologies that developers use to connect and
configure parts of a Java application. Oracle Event Processing applications also
support adding logic as Spring beans, which are Java components that support
Spring framework features.

You can find out more about Spring at the project’s web site:
http://www.springsource.org/get-started.

■ OSGi: Oracle Event Processing application components are assembled and
deployed as OSGi bundles. You can find out more about OSGi at:
http://en.wikipedia.org/wiki/OSGi.

■ XML: Oracle Event Processing application configuration files are written in XML.
These files include the assembly file, which defines relationships between EPN
stages and other design-time configurations. A separate configuration XML file
that contains settings that can be modified after the application is deployed,
including Oracle CQL queries.

■ SQL: Oracle CQL extends SQL with functionality designed to address the needs of
applications that use streaming data.

■ Hadoop: Oracle CQL developers can access big data Hadoop data sources from
query code. Hadoop is an open source technology that provides access to large
data sets that are distributed across clusters. One strength of the Hadoop software
is that it provides access to large quantities of data not stored in a relational
database.

For more information about Hadoop, start with the Hadoop project website at
http://hadoop.apache.org/.

■ NoSQL: Oracle CQL developers can access big data NoSQL data sources from
query code. The Oracle NoSQL Database is a distributed key-value database. In
Oracle NoSQL, data is stored as key-value pairs, which are written to particular
storage stages. Storage stages are replicated to ensure high availability, rapid fail
over in the event of a stage failure, and optimal load balancing of queries.

For more information about Oracle NoSQL, see the Oracle Technology Network
page at http://www.oracle.com/technetwork/products/nosqldb/.

Oracle Event Processing High-Level Use Cases

Oracle Event Processing Overview 1-5

1.6 Oracle Event Processing High-Level Use Cases
The use cases described in this section illustrate specific uses for Oracle Event
Processing applications.

Financial: Responsive Customer Relationship
Acting on an initiative to improve relationships with customers, a retail bank designs
an effort to provide coupons tailored to each customer’s purchase pattern and
geography.

The bank collects automated teller machine (ATM) data, including data about the
geographical region for the customer’s most common ATM activity. The bank also
captures credit card transaction activity. Using this data, the bank can push purchase
incentives (such as coupons) to the customer in real time based on where they are and
what they tend to buy.

An Oracle Event Processing application receives event data in the form of ATM and
credit card activity. Oracle CQL queries filter incoming events for patterns that isolate
the customer’s geography by way of GPS coordinates and likely purchase interests
nearby. This transient data is matched against the bank’s stored customer profile data.
If a good match is found, a purchase incentive is sent to the customer in real time, such
as through their mobile device.

Telecommunications: Real-Time Billing
Due to significant growth in mobile data usage, a telecommunications company with a
large mobile customer base wants to shift billing for data usage from a flat-rate system
to a real-time per-use system.

The company tracks IP addresses allocated to mobile devices and correlates this with
stored user account data. Additional data is collected from deep-packet inspection
(DPI) devices (for finer detail about data plan usage) and IP servers, then inserted into
a Hadoop-based big data warehouse.

An Oracle Event Processing application receives usage information as event data in
real time. Through Oracle CQL queries, and by correlating transient usage data with
stored customer account data, the application determines billing requirements.

Energy: Improving Efficiency Through Analysis of Big Data
A company offering data management devices and services needs to improve its data
center coordination and energy management to reduce total cost of ownership. The
company needs finer-grained, more detailed sensor and data center reporting.

The company receives energy usage sensor data from disparate resources. Data from
each sensor must be analyzed for its local relevance, and must be aggregated with data
from other sensors to identify patterns that can be used to improve efficiency.

Separate Oracle Event Processing applications provide a two-tiered approach.

One application, deployed in each of thousands of data centers, receives sensor data as
event data. Through Oracle CQL queries against events representing the sensor data,
this application analyzes local usage, filtering for fault and problem events and
sending alerts when needed.

The other application, deployed in multiple central management sites, receives event
data from lower-tier applications. This application aggregates and correlates data from
across the system to identify consistency issues and produce data to be used in reports
on patterns.

Oracle Event Processing High-Level Use Cases

1-6 Getting Started with Oracle Event Processing

2

Oracle JDeveloper Quick Reference 2-1

2Oracle JDeveloper Quick Reference

Oracle Event Processing application development tasks can be performed in a number
of ways in Oracle JDeveloper for the 12c release. The following sections describes one
way to locate each task. If you are new to Oracle JDeveloper, you will discover other
ways to locate the same tasks as you become more familiar with it.

This chapter covers the following topics:

■ Section 2.1, "Setting Accessibility Options"

■ Section 2.2, "Oracle Event Processing Support"

■ Section 2.3, "Open Oracle JDeveloper Windows"

■ Section 2.4, "Create an Oracle Event Processing Project"

■ Section 2.5, "Project Templates"

■ Section 2.6, "Assembly and Component Configuration Files"

■ Section 2.7, "Set the Path to Project Source Files"

■ Section 2.8, "Perform Project-Level Actions"

■ Section 2.9, "Import a Zip or JAR file"

■ Section 2.10, "EPN Diagram Features"

■ Section 2.11, "Components Window"

■ Section 2.12, "Context Menus"

2.1 Setting Accessibility Options
JDeveloper provides accessibility options, such as support for screen readers, screen
magnifiers, and standard shortcut keys for keyboard navigation. You can also
customize JDeveloper for better readability, including the size and color of fonts and
the color and shape of objects. For information and instructions on configuring
accessibility in JDeveloper, see “Oracle JDeveloper Accessibility Information” in
Developing Applications with Oracle JDeveloper.

2.2 Oracle Event Processing Support
When you launch Oracle JDeveloper in the Studio Developer (All Features) role, it
provides a full feature set for creating Oracle Event Processing applications. Figure 2–1
shows an Oracle Event Processing application open in Oracle JDeveloper.

Open Oracle JDeveloper Windows

2-2 Getting Started with Oracle Event Processing

Figure 2–1 An Oracle Event Processing Application in Oracle JDeveloper

2.3 Open Oracle JDeveloper Windows
Use the Window menu to display the Oracle JDeveloper windows you need, such as
the Components window. See "Components Window."

2.4 Create an Oracle Event Processing Project
Use the File menu to create the following project files.

Create a New Oracle Event Processing Application
Select File > New > Application > OEP Application.

An application is a container for projects.

Create a New Oracle Event Processing Project
Select File > New > Project > OEP Project.

You add projects to applications.

Import an Oracle Event Processing Bundle
Select File > Import > OEP Bundle into New Project.

You can add an existing project to the application. Use this option to import an Eclipse
project as described in Section 3.1, "Import an Eclipse Project into Oracle JDeveloper."

Create a New Project Library
Select File > New > Project > OEP Library Project.

Add libraries to your projects to provide additional functionality such as utilities and
common Java classes that can be shared across projects.

2.5 Project Templates
When you create a project, you can choose from a selection of Oracle Event Processing
application templates on which to base the project. The templates provide basic

Perform Project-Level Actions

Oracle JDeveloper Quick Reference 2-3

functionality including an EPN and the assembly and configuration files for the
following types of projects:

Empty OEP Project template that provides the basic structure for an empty Oracle
event Processing application. Use this application template when none of the other
templates meet your needs.

FX template that simulates a foreign currency exchange application.

Hello World template that provides a simple application that sends the Hello World
message to the server console.

Signal Generation template that simulates receiving stock market events and
generating signals for changes in the price or volume.

2.6 Assembly and Component Configuration Files
The assembly file is a context file that describes the EPN diagram stages and structure.
The component configuration file describes component configuration and the dynamic
parameters of the EPN stages. An application can have one or more assembly files and
one or more configuration files.

Oracle JDeveloper provides default assembly and configuration files that it creates
when you add components to the EPN and make connections. By default, the
assembly file name is <Project_Name>.context.xml, and the configuration file name
is processor.xml

When you add components to the EPN, you can change the default configuration file
name to another file. If the alternate file already exists, Oracle JDeveloper saves the
configuration in that file. If the file does not already exist, Oracle JDeveloper creates
the file. For example, you might want to store all adapter configuration information in
the adapter.xml configuration file.

You can also explicitly create assembly and configuration files. See Section 3.4,
"Assembly and Configuration Files."

2.7 Set the Path to Project Source Files
To set the path to the Oracle Event Processing source files, select the project and select
Edit > Properties > Project Source Paths.

2.8 Perform Project-Level Actions
In the Applications window, select and right-click an Oracle Event Processing project
to display a context menu with the following options:

Open EPN Diagram: Displays the Oracle Event Processing EPN diagram. See "EPN
Diagram Features."

Configure JDBC Context: Use this option to configure a JDBC context. A JDBC
context defines an application context for an instance of an Oracle JDBC data cartridge.
Use this option only when you use a non-Oracle JDBC driver.

Configure Spatial Context: Use this option to configure a spatial context to manage a
large number of moving objects such as complex polygons and circles, 3D positioning,
and spatial clustering.

Deploy > oep-profile: Use this option to select an Oracle Event Processing
deployment bundle or to assemble a new deployment bundle.

Import a Zip or JAR file

2-4 Getting Started with Oracle Event Processing

Deploy > New Deployment Profile: Create a deployment profile for your application.
An application can have any number of deployment profiles.

2.9 Import a Zip or JAR file
Use Import > OEP Bundle into New Project to import a zip or JAR file into Oracle
JDeveloper. You cannot import a zip or JAR file from the command line.

2.10 EPN Diagram Features
The EPN diagram has a number of features that you can use when you create and edit
an EPN. The EPN diagram uses an optimized layout by default. After you add, move,
or delete components from the EPN diagram, the diagram updates and adjusts the
layout.

Open the EPN Diagram
1. Expand [ProjectName] > OEP Content.

2. Double-click EPN Diagram.

The EPN diagram opens in the EPN Types tab in the middle pane. Next to the
EPN tab is the Event Types tab. The Event Types tab enables you to create an event
type.

EPN tabs also display at the bottom of the left pane: EPN Diagram - Structure and
Thumbnail.

The structure view shows the EPN diagram component tree.

The thumbnail view shows a small version of the entire EPN diagram with a
rectangle that overlays the visible part of diagram in the editor. You can move the
rectangle across the diagram to quickly the visible part of EPN diagram in the
editor.

Create an Event Type
1. Open the EPN Diagram.

The EPN diagram opens in the EPN tab in the middle pane.

2. Select the Event Types tab next to the EPN tab.

3. Provide the event type information.

See Section 4.5, "Create an Event Type to Carry Event Data" for information on
how to create an event.

Add Component
Drag a component from the Components window onto an empty area in the EPN to
build the EPN diagram. See "Components Window."

Delete Component
Right-click the component and select Delete from the context menu or select the
component and press the Delete key.

Rename Component
1. Select the component on the EPN diagram.

Oracle JDeveloper highlights the component.

EPN Diagram Features

Oracle JDeveloper Quick Reference 2-5

2. Click the component name.

The in-line name editor displays.

3. Change the name.

4. Click an empty area on the EPN diagram.

The in-line name editor closes.

Editors
You can edit an EPN through different Oracle JDeveloper editors: XML Source code,
property sheets, EPN Diagram, Manifest Editor, and so on. Validation annotations to
indicate errors show in all editors. The editors provide the following features when
you create Oracle CQL statements:

■ Syntax highlighting

■ Code completion

■ Syntax validation

■ Dynamic semantic validation

■ Parameterized Oracle CQL statements

You can add a bindings block to an parameterized query. As you code the
bindings block, code completion suggests the binding ID with the list of available
query IDS within the current processor scope. The following example shows how
to add a binding block to a query.

<query id="helloworldRule">
<![CDATA[select :1 from helloworldInputChannel]]>
<bindings>
<binding id="helloworldRule">

 <params id="param1">'My message is here: ' || message as message</params>
 </binding>
</bindings>

Badges
A badge is a small icon that displays on a stage. The badge displays additional
information about the component. For example, if there is a validation error or
warning related to the component, the EPN editor displays the error or warning badge
on that component. When the situation causing the badge to appear resolves, the
badge disappears.

Mouse over the badge to display the associated messages. Mouse click on the
annotation badge to display the associated messages and a link to detailed
information.

Zoom In or Out
You can zoom in or out on the EPN diagram in the following ways:

■ Press the Ctrl key and mouse scroll.

■ On the editor tool bar, choose a zooming value from the list of predefined zooming
values.

■ Select or open the thumbnail panel and use the mouse scroll.

Print the EPN Diagram
1. With the EPN editor open, select File > Print Preview.

Components Window

2-6 Getting Started with Oracle Event Processing

2. In the Print Preview dialog, review the settings and click Print.

Export the EPN Diagram to an Image
1. Select Diagram > Publish Diagram.

2. Enter a file name and choose the appropriate file type.

3. Select Save.

Nested Components
When you define a child stage inside a parent stage, the child stage is nested. The
nested stage is visible in the EPN diagram in an indented box. You cannot edit nested
stages, but you can delete them.

Only the parent stage can specify the child stage as a listener. You can drag references
from a nested element, but you cannot drag references to a nested element.

Foreign Components
A foreign component (foreign stage) is a component that is defined in a different
application. On an EPN diagram, a foreign stage is visible as a ghost component. To
reference a foreign stage, use the following syntax in the assembly file:

FOREIGN-APPLICATION-NAME: The name of the application where the foreign stage is.

FOREIGN-STAGE-ID: The ID attribute of the foreign stage.

2.11 Components Window
The Components window provides the Oracle Event Processing components for
building an EPN. You drag the component you want to add to your EPN to a blank
area on the EPN canvas and use the component wizard to configure it. You add the
component to the EPN by dragging a component already in the diagram to the new
component. The new component is placed to the right of the component that you
dragged. See Chapter 4, "Create a Basic Application" for step-by-step instructions.

The following list describes the components available on the Components window.

Base EPN Components:

■ Adapter: Use an adapter to connect the EPN to external input or output data
sources. The Adapter component represents a generic adapter that you can
customize for your application requirements.

■ Bean: Use a bean to define application event logic written in the Java
programming language that conforms to standard Spring-based beans. See
http://www.springsource.org/spring-framework.

■ Cache: Use a cache to set up an area of random access memory (RAM) that holds
copies of recently accessed data for ready access by an application. You must have
a Cache System component in the EPN to add a Cache component.

■ Channel: Use a channel to transfer events from stage to stage in the EPN.

Note: When you reference foreign stages, you must consider foreign
stage dependencies when assembling, deploying, and redeploying an
application.

Components Window

Oracle JDeveloper Quick Reference 2-7

■ Event Bean: Use an event bean to define application event logic written in the Java
programming language that conforms to the JavaBeans specification. The event
bean is an Oracle extension to the regular Spring-based bean.

■ Processor: Use a processor when you want to add Oracle CQL query code to your
application. Oracle CQL can read from the big data Hadoop and NoSQLDB
components.

■ Table: Use a table as an external relation source. You can also use a table to store
events in the database by configuring the table as a listener of an upstream
component.

■ Advanced Adapters:

– CSVInbound: Use a CSVInbound adapter to accept data in the form of
comma-separated values entering the EPN.

– CSVOutbound: Use a CSVOutbound adapter to send data in
comma-separated values out of the EPN.

– HTTP Publisher: Use an HTTP Publisher adapter to send JavaScript Object
Notation (JSON) event data out of the EPN to a web-based user interface.

– HTTP Subscriber: Use an HTTP Subscriber adapter to accept JavaScript
Object Notation (JSON) event data entering the EPN. JSON event data comes
from an HTTP server where user actions generate events.

– JMS Inbound: Use a JMS Inbound adapter to accept Java Message Service
(JMS) topics entering the EPN.

– JMS Outbound. Use a JMS Outbound adapter to send JMS topics out of the
EPN.

■ Big Data Extensions

– Hadoop: A data cartridge extension for an Oracle CQL processor to access
large quantities of data in a Hadoop distributed file system (HDFS). HDFS is a
non-relational data store.

– NoSQLDB: A data cartridge extension for an Oracle CQL processor to access
large quantities of data in an Oracle NoSQL Database. The Oracle NoSQLDB
Database stores data in key-value pairs.

■ Cache Systems

– Coherence Cache System: Use a Coherence Cache System component to set
up a system to maintain consistent data that is stored in local caches on a
shared resource.

– Local Cache System: Use a Local Cache System to speed up network access to
data files.

■ CQL Patterns

See Section 3.13, "Use Oracle CQL Patterns" for information about how to use the
patterns.

– Averaging Rule: Use an Averaging Rule component to compute an average
over a specified number of events (table rows).

– Detect Missing Event Rule: Use a Detect Missing Event Rule component to
detect when an expected event does not occur.

Context Menus

2-8 Getting Started with Oracle Event Processing

– Partitioning Rule: Use a Partitioning Rule component to partition the event
panel by an event property and display the specified number of events in the
partition.

– Select With Subsequent Filtering Query: Use a Select with Subsequent
Filtering Query component to filter events to populate the view with events
that pass the filter criteria.

– Select From Multiple Streams: Use a Select From Multiple Streams
component to join two streams to select from correlated events.

– Select With From: Use a Select With From component to select events from a
channel according to the specified properties.

– Select With Pattern Matching: Use a Select With Pattern Matching component
to select events from a channel according to specified property values.

WLS Extensions:

■ RMIInbound: Use an RMIInbound adapter to receive incoming data sent from
Oracle WebLogic Server over the remote method invocation (RMI) protocol.

■ RMIOutbound: Use an RMIOutbound adapter to send data to Oracle WebLogic
Server over the RMI protocol.

EDN Adapters:

■ EDNInbound: Use an EDNInbound adapter to receive incoming data from the
Oracle SOA Suite event network.

■ EDNOutbound: Use an EDNOutbound adapter to send outbound data to the
Oracle SOA Suite event network.

2.12 Context Menus
Each stage on the EPN editor has a group of context menu items that provide
convenient access to various stage-specific functions. Right-click the stage to display
its context menu.

Depending on the stage type, you can use the EPN Editor context menu to select from
the following options:

■ Add Configuration Source: Adds a configuration file to the project.

■ Define Java Class: Opens a wizard to that you can create a Java class.

■ Delete Configuration Source. Deletes a configuration file from the project.

■ Go to Configuration Source: Opens the corresponding component configuration
file and positions the cursor in the appropriate element.

■ Go to Assembly Source: Opens the corresponding EPN assembly file and
positions the cursor in the appropriate element.

■ Go to Java Source: Opens the corresponding Java source file for this component.

Note: Oracle JDeveloper does not have an Oracle CQL visual editor.
There is an Oracle CQL visual editor in Oracle Event Processing
Visualizer. See Oracle Fusion Middleware Using Visualizer for Oracle
Event Processing.

Context Menus

Oracle JDeveloper Quick Reference 2-9

■ Delete: Deletes the component from both the EPN assembly file and component
configuration file (if applicable).

Note that these navigation options become disabled when a corresponding source
artifact cannot be found. For example, if an adapter does not have a corresponding
entry in a configuration XML file, its Go to Configuration Source menu item is greyed
out.

Context Menus

2-10 Getting Started with Oracle Event Processing

3

Oracle JDeveloper Procedures 3-1

3Oracle JDeveloper Procedures

The following sections describes how to perform Oracle Event Processing tasks in
Oracle JDeveloper.

This chapter covers the following topics:

■ Section 3.1, "Import an Eclipse Project into Oracle JDeveloper"

■ Section 3.2, "Add a Library to a Project"

■ Section 3.3, "Create an Application Library"

■ Section 3.4, "Assembly and Configuration Files"

■ Section 3.5, "Configure a Relation Channel"

■ Section 3.6, "Configure an Application Time-Stamped Channel"

■ Section 3.7, "Create and Register a JavaBean Event Type"

■ Section 3.8, "Create and Register a Tuple Event Type"

■ Section 3.9, "Create an Event Bean"

■ Section 3.10, "Create a Spring Bean"

■ Section 3.11, "Configure a Table Source"

■ Section 3.12, "Configure a Table Sink"

■ Section 3.13, "Use Oracle CQL Patterns"

■ Section 3.14, "Configure an Oracle Coherence Caching System and Cache"

■ Section 3.15, "Configure a Local Caching System and Cache"

■ Section 3.16, "Debug Java Classes"

■ Section 3.17, "Testing with the Event Inspector Service"

■ Section 3.18, "Start and Stop Oracle JDeveloper and Servers"

3.1 Import an Eclipse Project into Oracle JDeveloper
You can import an Oracle Event Processing Eclipse project into Oracle JDeveloper as a
bundle. A bundle is an Oracle Event Processing Eclipse project that is exported as an
Archive (zip) or JAR file. There is no command-line command to import an Eclipse
project into Oracle JDeveloper.

■ Import an Eclipse Project into Oracle JDeveloper

■ Build the Imported Project

Import an Eclipse Project into Oracle JDeveloper

3-2 Getting Started with Oracle Event Processing

■ Start the Oracle Event Processing Server

■ Deploy

Import an Eclipse Project into Oracle JDeveloper
Be aware that you cannot import an Eclipse project that consists of multiple
applications or projects. The Eclipse project that you import can only be an Oracle
Event Processing project. You cannot import a Coherence or Java project.

When you import a zip or JAR file from Eclipse, Oracle JDeveloper 12c supports
JDK1.7 only. You cannot export your JDK 1.6 project from Eclipse and then import the
project into Oracle JDeveloper using JDK1.7. You have to move from JDK 1.7 in Eclipse
to JDK 1.7 in Oracle JDeveloper.

1. In Eclipse, export your Eclipse project as a zip or JAR file.

Make sure you include Source files and Resources.

2. In Oracle JDeveloper, select File > Import > OEP Bundle into New Project.

The steps are different depending on whether you have an existing Oracle
JDeveloper application or not.

If you have an existing application, the Import OEP Bundle as Project - Step 1 of 2
dialog displays to import the bundle into the active application.

a. In the Step 1 of 2 dialog, provide the name of the project, use or change the
directory name, and click Next.

The Import OEP Bundle as Project - Step 3 of 3 dialog displays.

b. In the Step 2of 2dialog, find and select the exported the Eclipse zip file and
click Finish.

The project displays in Oracle JDeveloper under Applications.

If you do not have an existing application, The Import OEP Bundle as Project -
Step 1 of 3 dialog displays so that you can create an application for the project.

a. In the Step 1 of 3 dialog, provide the name and location for the application
and click Next.

The Import OEP Bundle as Project - Step 2 of 3 dialog displays.

b. In the Step 2 of 3 dialog, provide the name of the project, use or change the
directory name, and click Next.

The Import OEP Bundle as Project - Step 3 of 3 dialog displays.

c. In the Step 3 of 3 dialog, find and select the exported the Eclipse zip file and
click Finish.

The project displays in Oracle JDeveloper under Applications.

Build the Imported Project
1. Select the imported application and select Build > <project-name>.

Note: You can import a JDK1.6 Eclipse Oracle Event Processing
application project, but Oracle JDeveloper does not handle any
compilation issues for you. In this case, it is your responsibility to
handle compilation issues if they appear.

Import an Eclipse Project into Oracle JDeveloper

Oracle JDeveloper Procedures 3-3

2. If you see errors in the log window indicating you need additional JAR files in the
class path, then select the top-level project folder and select Project Properties.

The Project Properties dialog displays.

3. In the Project Properties dialog left panel, select Libraries and Classpath.

The Libraries and Classpath dialog displays.

4. In the Libraries and Classpath dialog, click Add Jar/Directory.

The Add Archive or Directory dialog displays.

5. In the Add Archive or Directory dialog, locate the JAR files that you need to add.

6. Click OK.

7. Rebuild the project.

8. Repeat this process until you have located and added all of the required files.

9. If you see problems in the source code, then use the quick fixes to organize and
add imports.

Start the Oracle Event Processing Server
See Section 3.18, "Start and Stop Oracle JDeveloper and Servers."

Deploy
1. Right click the project.

The context menu displays.

2. From the context menu, select Deploy > New Deployment Profile.

The Create Deployment Profile dialog displays.

3. In the Create Deployment Profile dialog, choose a deployment profile, such as
OEP Project Deployment Profile, and give it a name.

4. Click OK.

The OEP Project Deployment Profile dialog displays.

5. In the OEP Project Deployment Profile dialog, you can either create a new Oracle
Event Processing server connection or select an existing connection.

To select an existing connection:

a. In the Connection to OEP Server drop-down list, select the existing connection
you want to use.

b. In the OEP Project Deployment Profile dialog, accept the defaults or provide
the requested profile details.

c. Click OK.

To create a new connection:

a. Click the Add (+) button to create an Oracle Event Processing server
connection.

The Create OEP Server Connection dialog displays.

b. In the Create OEP Server Connection dialog, provide the connection details:

OEP Server Connection Name: SampleOEPConnection
OEP Server Home Path: /Oracle/Middleware/my_oep/
Use Default Values: Unchecked.

Import an Eclipse Project into Oracle JDeveloper

3-4 Getting Started with Oracle Event Processing

 OEP Server Projects Directory: user_projects/domains/
sample_domain/defaultserver

Use Default Values: Unchecked
 Host: localhost
 Port: 9002
Use Default Values: Unchecked
 Username: oepadmin
 User Password: welcome1
Additional Parameters for OEP Server: blank

c. In the Create OEP Server Connection dialog, click Test Connection.

If everything is okay, then Success displays in the message box below the Test
Connection button. If you have errors, locate and fix the errors and try again.

d. When you see Success, click OK.

The OEP Project Deployment Profile dialog displays.

e. In the OEP Project Deployment Profile dialog, accept the defaults or provide
the requested profile details.

f. Click OK.

6. Right click the project and select the deployment profile you just selected or
created.

The Deploy <profile-name> dialog displays.

7. In the Deploy <profile-name> dialog, select Deploy OSGi bundle to target
platform and click Next.

The Summary dialog displays.

8. In the Summary dialog, review the settings and click Finish.

9. Wait a few moments while the deployment finishes.

The Deployment finished message displays on the Deployment - Log tab. If there
are problems starting the application, it undeploys automatically.

10. View the server log and the list of deployed applications.

To view the server log:

a. If the Resources window is not open, select Window > Resources.

The Resources window displays.

b. Navigate to Resources Window > IDE Connections > OEP Server.

c. Expand OEP Server to see a list of OEP server connections.

d. Right click a connection.

The context menu displays.

Add a Library to a Project

Oracle JDeveloper Procedures 3-5

e. From the context menu, select Open OEP Server Log Page.

The OEP server log page opens and you can see the server log messages.

To view the list of deployed applications:

a. If the Resources window is not open, Select Window > Resources.

The Resources window displays.

b. Navigate to Resources Window > IDE Connections > OEP Server.

c. Expand OEP Server to see a list of OEP server connections.

d. Navigate to Resources window > IDE Connections > OEP Server.

A list of OEP server connections displays.

e. Under OEP Server expand the connection for the application you just
deployed.

-OEP Server
-SampleOEPConnection

+Applications

f. Under the expanded connection, expand Applications.

The list of deployed applications and their status displays. For example, you
might see a listing similar to this:

application1 [RUNNING]
my_application2 [SUSPENDED}

3.2 Add a Library to a Project
You can add a library JAR file to your application as a resource.

1. In Oracle JDeveloper, right-click the project.

The context menu displays.

2. In the context menu, select Add Project Library.

The Add Project Library dialog displays.

3. In the Add Project Library dialog in the Library JAR field, navigate to the library
JAR file you want to add to your application.

4. Click OK.

The JAR file displays under Resources for the project, and the project manifest file
updates accordingly.

Create an Application Library

3-6 Getting Started with Oracle Event Processing

3.3 Create an Application Library
You can create an application library to share among applications running in the same
domain.

■ Create an Oracle Event Processing Library Project

■ Create Deployment Profile and Deploy

Create an Oracle Event Processing Library Project
1. In Oracle JDeveloper, select File > New from Gallery.

The New Gallery dialog displays

2. In the New Gallery dialog in the left window, select OEP Tier, and in the right
window, select OEP Library Project.

3. Click OK.

The Create OEP Library Project - Step 1 of 2 dialog displays.

4. In the Create OEP Library Project - Step 1 of 2 dialog, enter the Project name and
optionally a directory location.

5. Click Next.

The Create OEP Library Project - Step 3of 2 dialog displays.

6. In the Create OEP Library Project - Step 2of 2 dialog, locate the JAR file that you
want the library project to contain.

7. In the Create OEP Library Project - Step 2of 2 dialog, provide the other
information or accept the defaults and click Finish.

If your library is a driver, check the Deploy to Library Extensions check box so the
library activates in the correct order. See Oracle Fusion Middleware Developing
Application for Oracle Event Processing .

The library project displays in the application under Projects.

Create Deployment Profile and Deploy
1. Right-click the library project. and select Deploy.

2. Select either app_lib_profile-n or create a new deployment profile for this library.

3. In the Deployment Action dialog, select Deploy the library JAR to OEP Server
and click Next.

4. Review the Deployment Summary and click Finish.

The library deploys to the local server.

5. Restart the Oracle Event Processing server.

3.4 Assembly and Configuration Files
Oracle JDeveloper creates assembly and configuration files as you add components to
the EPN and make connections. You can also create your own assembly and
configuration files to use instead of the defaults. When a component wizard lists the

Note: In 12c the Oracle JDeveloper deployment profile supports only
local Oracle Event Processing connections.

Assembly and Configuration Files

Oracle JDeveloper Procedures 3-7

default processor.xml file, you can replace the default with the file you create. An
application can have one or more assembly files and one or more configuration files.

■ The assembly file is a context file that describes the EPN diagram stages and
structure. By default, the assembly file name is <Project_Name>.context.xml.

■ The configuration file describes component configuration and the dynamic
parameters of the EPN stages. By default, the configuration file name is
processor.xml.

When you add components to the EPN, you can change the default configuration file
name to another file. If the alternate file already exists, Oracle JDeveloper saves the
configuration in that file. If the file does not already exist, Oracle JDeveloper creates
the file and saves the configuration in it. For example, you might want to store all
adapter configuration information in the adapter.xml configuration file. If you do not
specify any configuration settings when you create the component, Oracle JDeveloper
does not create a new configuration file because there is no configuration to put in it.

The walkthroughs in this guide have example assembly and configuration files that
you can study. See also Oracle Fusion Middleware Developing Application for Oracle Event
Processing for examples of assembly and configuration files for many of the Oracle
Event Processing components.

3.4.1 Create an Assembly File
1. In Oracle JDeveloper with the project selected, select File > New > From Gallery.

The New Gallery dialog displays.

2. In the New Gallery dialog under Categories, expand OEP Tier and select OEP
Files.

3. In the New Gallery dialog under Items, Select OEP Assembly File and click OK.

The Create OEP Assembly File dialog displays.

4. In the Create OEP Assembly File dialog, provide a file name and directory
location or accept the defaults.

Provide an assembly file name that associates the assembly file with a project.

5. Click OK.

The new assembly file displays in the left pane under the project in OEP Content >
Spring.

3.4.2 Create a Component Configuration File
1. In Oracle JDeveloper with the project selected, select File > New > From Gallery.

The New Gallery dialog displays.

2. In the New Gallery dialog under Categories, expand OEP Tier and select OEP
Files.

3. In the New Gallery dialog under Items, Select OEP Config File and click OK.

The Create OEP Config File dialog displays.

Note: Identifiers and names in XML files are case sensitive. Use the
same case when you reference the component ID in the assembly file.

Assembly and Configuration Files

3-8 Getting Started with Oracle Event Processing

4. In the Create OEP Config File dialog, provide a file name and directory location
or accept the defaults.

Provide a configuration file name that associates the configuration file with a
specific component, group of components, or type of component.

5. Click OK.

The new configuration file displays in the left pane under the project in OEP
Content > wlevs.

3.4.3 Add Components to a Configuration File
In Oracle JDeveloper, you can drag components from the Component window to an
open configuration file. This does not work with the assembly file.

1. In Oracle JDeveloper, open the configuration file to which you want to add a
component.

The configuration file opens in the middle panel, and the Components window
displays in the right panel.

2. Place your cursor in the configuration file where you want to add the component.

A blinking cursor displays at that location.

3. On the Components window, locate the component you want to add.

4. Drag-and-drop the component onto the open configuration file.

The wizard for that component displays.

If you chose an invalid location in the configuration file, Oracle JDeveloper
displays an error message so you can choose a valid location.

5. Enter the configuration information prompted by the configuration wizard and
click OK.

Oracle JDeveloper adds the configuration for that component to the configuration
file and updates the assembly file with the corresponding assembly settings as
needed.

3.4.4 Add Configuration Settings to a Component
When you add components to the EPN, sometimes you provide custom configuration
settings and sometimes you accept the default configuration. When you accept the
default configuration, Oracle JDeveloper does not add any entries for that component
to the configuration file. Oracle JDeveloper also does not create a configuration file
even if you specify a new configuration file name during the configuration process.

Later, if you decide to provide default settings, you need to either create a
configuration file as described in Section 3.4, "Assembly and Configuration Files" and
add the complete component configuration, or you can generate the configuration in
the default processor.xml file.

The following example shows how to generate a configuration entry for
AdapterOutputChannel in the processor.xml file.

Add Channel Configuration
1. Right-click the channel component in the EPN diagram.

The context menu displays.

Configure an Application Time-Stamped Channel

Oracle JDeveloper Procedures 3-9

2. In the context menu, select Add Configuration Source.

The processor.xml file opens and displays the default configuration for the
component. You can edit the default configuration to customize it.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">
 <channel>
 <name>AdapterOutputChannel</name>
 </channel>
</wlevs:config>

3. Make the channel multithreaded by adding the max-threads element:

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">
 <channel>
 <name>AdapterOutputChannel</name>
 <max-threads>4</max-threads>
 </channel>
</wlevs:config>

The maximum number of threads that Oracle Event Processing server can use to
process events for this channel is four.

3.5 Configure a Relation Channel
The default channel has a name, an ID, and is a system time-stamped, single-threaded
stream channel with a default heartbeat time out of 100 milliseconds or 100,000,000
nanoseconds. See Oracle Fusion Middleware Developing Application for Oracle Event
Processing for more information about channel configuration. You can change the
default channel to a relation by adding the is-relation=”true” element and attribute
to the assembly file.

A relation channel supports insert, delete, and update operations.

1. In the Oracle JDeveloper EPN editor, right-click a channel stage and select Go To
Assembly Source.

The assembly file displays.

2. In the assembly file, the cursor blinks next the channel definition.

The channel definition line looks similar to the following example:

<wlevs:channel id="TestChannel" event-type="TestEventType"/>

3. To change the channel to a relation, add an is-relation=”true” setting:

<wlevs:channel id="TestChannel" event-type="TestEventType" is-relation="true"
primary-key="testPrimaryKey" />

If you make the channel a relation, you must also configure the primary-key
attribute. The primary key is a list of event property names separated by white
space or a comma that uniquely identifies each event.

3.6 Configure an Application Time-Stamped Channel
You can configure a channel to be time stamped by an application. In this case, the
time-stamp of an event is determined by the configurable wlevs:expression element.
A common example of an expression is a reference to a property on the event. If no

Create and Register a JavaBean Event Type

3-10 Getting Started with Oracle Event Processing

expression is on the event, then the time stamp is propagated from a prior event. For
example, when you have a channel that is time stamped from the system from one
Oracle CQL processor feeding events into an channel that is time stamped by an
application from another downstream Oracle CQL processor.

Make sure you have an event type created. A channel needs to know the event type to
send the data to the correct stage.

1. Create a default channel.

2. In the application assembly file, add a wlevs:application-timestamped child
element.

3. In the wlevs:application-timestamped child element, specify a
wlevs:expression child element for Oracle Event Processing to use to generate
time stamp values. For example:

<wlevs:channel id="fxMarketAmerOut" event-type=”eventtype” >
<wlevs:application-timestamped>

<wlevs:expression>mytime+10</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>

4. Configure the optional wlevs:application-timestamped attribute,
is-total-order. When true, the is-total-order attribute indicates that the
application time published is always strictly greater than the last value used.

The attributes are described in Oracle Fusion Middleware Developing Application
for Oracle Event Processing .

For example:

<wlevs:channel id="fxMarketAmerOut" event-type=”eventtype” >
<wlevs:application-timestamped is-total-order="true">

 <wlevs:expression>mytime+10</wlevs:expression>
</wlevs:application-timestamped>

</wlevs:channel>

5. Save and close the assembly file.

3.7 Create and Register a JavaBean Event Type
1. Select the Oracle JDeveloper project to which you want to add the event type.

2. Create a JavaBean with a no-argument, public constructor.

3. Optional. Make the class serializable if you plan to cache events in Oracle
Coherence.

4. Add the private fields and accessor methods to the JavaBean.

5. In Oracle JDeveloper, with the EPN diagram open, use the Event tab to configure
the event type with properties such as the name of the JavaBean.

The Event tab enables you to declare and edit event types. When you close the
Event tab, the event type you created or edited is registered in the corresponding
Event Type Repository section of the application assembly file.

a. Under Event Type Definitions, select the application assembly file.

b. Click the Add (+) button.

The Event Type Details panel displays on the left.

Create an Event Bean

Oracle JDeveloper Procedures 3-11

c. Under Event Type Details, select Properties Defined in JavaBean.

d. Provide the name of the JavaBean class.

3.8 Create and Register a Tuple Event Type
This procedure describes how to create and register an Oracle Event Processing event
type as a tuple using the Oracle Event Processing IDE event type repository editor.
When you design your event, you must restrict your design to the even data types that
Oracle Fusion Middleware Developing Application for Oracle Event Processing
describes.

Create a Tuple Event Type in Oracle JDeveloper
1. Select the Oracle JDeveloper project to which you want to add the event type.

2. In Oracle JDeveloper with the EPN diagram open, use the Event tab to configure
the event type with properties such as the name of the JavaBean.

The Event tab enables you to declare and edit event types. When you close the
Event tab, the event type you created or edited is registered in the corresponding
Event Type Repository section of the application assembly file.

a. Under Event Type Definitions, select the application assembly file.

b. Click the Add (+) button.

The Event Type Details panel displays on the left.

c. Under Event Type Details, select Properties Declaratively.

d. In the Type Name field, enter a name for the new event type.

e. Under Event Type Properties use the Add (+) button to add a property row to
the Event Type Properties list.

f. Place your cursor inside the Name column to edit the property name.

g. Place your cursor inside the Type column and choose a data type from the
drop-down list.

The char data type has a default length of 256 characters that you can edit by
placing your cursor inside the char length column.

3.9 Create an Event Bean
An event bean is an EPN component that applies logic to events as they pass through.
The event bean logic is defined by its JavaBean event type.

1. Optionally, create the Java class you want to use as described in Oracle Fusion
Middleware Developing Application for Oracle Event Processing .

In step 3, you can select an existing class or create a new one and add the logic
later.

2. In Oracle JDeveloper with the EPN diagram open, drag the Event Bean
component from the Components window to an empty area on the EPN diagram.

The New EventBean wizard displays.

3. In the New EventBean wizard, provide the following information:

Create a Spring Bean

3-12 Getting Started with Oracle Event Processing

EventBean ID: A unique identifier for this event bean.
EventBean class: Add (+) or choose the JavaBean class (event type) you want to
use for this event bean.

Oracle Fusion Middleware Developing Application for Oracle Event Processing
for information about making the Java class an event sink, event source, or both.

4. Click OK.

Oracle JDeveloper adds the event bean to the EPN.

5. Drag the upstream component to the event bean to place the event bean in its
correct location in the EPN.

The EPN diagram adjusts to show the event bean in its correct location.

Assembly File
The following event bean assembly file entry shows the event bean id, associated
class, and that the event bean listens for events from the upstream Bean Output
Channel component.

<wlevs:event-bean id="eventBean" class="tradereport.TradeEvent" >
 <wlevs:listener ref="BeanOutputChannel"/>
<wlevs:event-bean>

Configuration File
The following event bean configuration file entry shows an event bean configured
with the record-parameters child element:

 <event-bean>
 <name>eventBean</name>
 <record-parameters>
 <dataset-name>tradereport_sample</dataset-name>
 <event-type-list>
 <event-type>TradeEvent</event-type>
 </event-type-list>
 <batch-size>1</batch-size>
 <batch-time-out>10</batch-time-out>
 </record-parameters>
 </event-bean>

3.10 Create a Spring Bean
You can configure a Java class as a Spring bean to include the class in an event
processing network. This is a good option if you have an existing Spring bean that you
want to incorporate into the EPN or if you want to incorporate Spring features into
your Java code.

1. Optionally, create the JavaBean event type you want to use as described in Oracle
Fusion Middleware Developing Application for Oracle Event Processing .

In step 3, you can select an existing class or create a new one and add the logic
later.

2. In Oracle JDeveloper with the EPN diagram open, drag the Bean component from
the Components window to an empty area on the EPN diagram.

The New Bean wizard displays.

3. In the New Bean wizard, provide the following information:

Configure a Table Source

Oracle JDeveloper Procedures 3-13

Bean ID: A unique identifier for this event bean.
Bean class: Add (+) or choose the JavaBean class (event type) with the Spring
functionality that you want to use for this bean.

4. Click OK.

Oracle JDeveloper adds the event bean to the EPN.

5. Drag the upstream component to the event bean to place the event bean in its
correct location in the EPN.

The EPN diagram adjusts to show the event bean in its correct location.

3.11 Configure a Table Source
You can access data in a relational database table from an Oracle CQL query by adding
a table source component to your application. When you add a table source, you
associate it with a data source for read access to the relational database table. Oracle
Event Processing relational table sources are pull data sources, which means that
Oracle Event Processing periodically checks the event source for new data to read
from the database.

■ You can join a stream only with a NOW window and only to a single database table.

Because changes in the table source are not coordinated in time with stream data,
you can only join the table source to an event stream with a Now window, and you
can only join to a single database table.

■ With an Oracle JDBC data cartridge, you can integrate arbitrarily complex SQL
queries and multiple tables and data sources with your Oracle CQL queries. See
Oracle Fusion Middleware Developing Applications with Oracle CQL Data Cartridges.

Whether you use the NOW window or the data cartridge, you must define table sources
in the Oracle Event Processing server file as described in Oracle Fusion Middleware
Administering Oracle Event Processing.

Create a Table Source
1. In Oracle JDeveloper open the EPN diagram.

2. In the Components window under Basic Components, drag the Table component
to an empty area on the EPN.

The New Table wizard opens.

3. In the New Table wizard, enter the following values and click OK:

Table ID: Stock
Event Type: TradeEvent
Data Source: StockDataSource

By default, the table source stage uses the name of the event type as the default
table name in the database. Also, you can explicitly specify the table name with
table-name elements. The table-name element provides the name of the database
table from which you want to get the event data.

Note: Oracle recommends the Oracle JDBC data cartridge for
accessing relational database tables from an Oracle CQL statement.

Configure a Table Source

3-14 Getting Started with Oracle Event Processing

The TradeEvent event type is created from a Java class that has the following five
private fields that map to columns in the relational database: symbol, price,
lastPrice, percChange, and volume.

The assembly file has entries to associate the Stock table with the proc processor
follows:

<wlevs:table id="Stock" event-type="TradeEvent" data-source="StockDataSource"/>

<wlevs:processor id=”proc”>
 <wkevs:table-source ref=”Stock” />
</wlevs:processor>

Create the Data Source
1. In Oracle JDeveloper in the configuration file, add the following lines to define the

data source:

<data-source>
<name>StockDataSource</name>
<connection-pool-params>
<initial-capacity>1</initial-capacity>
<max-capacity>10</max-capacity>

</connection-pool-params>
<driver-params>
<url>jdbc:derby:</url>
<driver-name>org.apache.derby.jdbc.EmbeddedDriver</driver-name>
<properties>
<element>
<name>databaseName</name>
<value>db</value>

</element>
<element>
<name>create</name>
<value>true</value>

</element>
</properties>

</driver-params>
<data-source-params>
<jndi-names>
<element>StockDataSource</element>

</jndi-names>
<global-transactions-protocol>None</global-transactions-protocol>

</data-source-params>
</data-source>

2. Save the file.

Read Data from the Stock Database Table
After configuration, you can define Oracle CQL queries that access the Stock table as if
it were another event stream. In the following example, the query joins the
StockTradeIStreamChannel event stream to the Stock table:

SELECT StockTradeIStreamChannel.symbol, StockTradeIStreamChannel.price,
 StockTradeIStream.lastPrice, StockTradeIStream.percChange,
 StockTradeIStream.volume, Stock
FROM StockTraceIStreamChannel [Now], Stock
WHERE StockTradeIStreamChannel.symbol = Stock.symbol

Note: The XMLTYPE property is not supported for table sources.

Use Oracle CQL Patterns

Oracle JDeveloper Procedures 3-15

Because changes in the table source are not coordinated in time with stream data, you
can only join the table source to an event stream with a Now window, and you can only
join to a single database table.

3.12 Configure a Table Sink
You can update and delete data in a relational database table from an Oracle CQL
query by adding a table sink component to your application. A table sink receives data
from an upstream component and performs update and delete operations on the
underlying relational database table according to the data received.

You can store incoming events in a relational database by adding a table sink
component to your application. When an event comes into the table sink, it is persisted
into the database and then send to the downstream stages. Oracle Event Processing
does not create the database table. You must create the database table before you run
the application. You must also maintain and back up the table as needed.

You create a table sink similar to how you create a table source. After you drag the
Table component to the EPN diagram and provide the ID, Event Type, and Data
Source, you edit the assembly file entry to include the required table-name and
key-properties elements. These elements are not required for table sources.

The table-name element provides the name of the database table to which you want to
store the event data. The key-properties element provides the unique key value for
the database table to enable Oracle CQL queries that perform update and delete
operations.

Assembly File
<wlevs:table id="StockSink" event-type="TradeEvent" data-source="StockDataSource"
 table-name=”StockEvents” key-properties=”symbol” />

Data Source Configuration
The data source configuration is the same for table sources and table sinks.

Store Data in the StockEvents Database Table
The following Oracle CQL query gets data from an input channel and sends it to the
table sink to persist the event data.

SELECT * FROM StockTraceIStreamChannel

3.13 Use Oracle CQL Patterns
Oracle JDeveloper provides the following seven Oracle CQL patterns to make it easier
for you to form Oracle CQL queries in your applications. Each Oracle CQL pattern is
stored within the context of an Oracle CQL processor. The processor can already be in
the EPN or not already be in the EPN.

■ Averaging Rule: Use an Averaging Rule component to compute an average over a
specified number of events (table rows).

■ Detect Missing Event Rule: Use a Detect Missing Event Rule component to detect
when an expected event does not occur.

■ Partitioning Rule: Use a Partitioning Rule component to partition the event panel
by an event property and display the specified number of events in the partition.

Use Oracle CQL Patterns

3-16 Getting Started with Oracle Event Processing

■ Select With Subsequent Filtering Query: Use a Select Filter Subquery component
to filter events to populate the view with events that pass the filter criteria.

■ Select From Multiple Streams: Use a Select From Multiple Streams component to
join two streams to select from correlated events.

■ Select With From: Use a Select With From component to select events from a
channel according to the specified properties.

■ Select With Pattern Matching: Use a Select With Pattern Matching component to
select events from a channel according to specified property values.

Procedure
To add any of the available Oracle CQL patterns to the EPN, perform the following
steps. Each Oracle CQL pattern is stored within the context of an Oracle CQL
processor. The processor can already be in the EPN or not already be in the EPN.

If the processor is already in the EPN, drag and drop the pattern on the existing
processor. If the processor is not already in the EPN, start with step 2

1. Indicate the processor in which to store the Oracle CQL pattern:

1. If the processor is already in the EPN, drag and drop the pattern on the
existing processor.

2. If the processor is not already in the EPN, drag the pattern to an empty spot on
the EPN diagram.

 Step 1 of the two-step wizard for that pattern displays with default values.

2. In the Oracle CQL Pattern wizard, Step 1 of 2 screen either accept the defaults or
enter the following values. Note that these values cannot be changed when you drag and
drop the Oracle CQL pattern on an existing processor.

Processor ID: A unique ID value of the Oracle CQL processor which will store this
Oracle CQL pattern. Oracle JDeveloper provides a default unique ID.

File Name: The name of the configuration file where you want the Oracle CQL
pattern configuration stored. Oracle JDeveloper provides the existing
processor.xml configuration file for the default. If you selected an existing Oracle
CQL processor, the file name field is unavailable because Oracle JDeveloper stores
the Oracle CQL pattern configuration in the same file with the processor.

3. Click Next.

Step 2 of the two-step wizard for that pattern displays with default values where
possible.

4. In the Oracle CQL Pattern wizard, Step 2 of 2 screen, accept the default values
where appropriate and enter values where needed.

To obtain information about valid values for a field, put your cursor in the field
and read the property description in the right panel or Click Help.

Step 2 has a parameters section on top with the Oracle CQL statement template
below. As you provide parameters in the top section, the template reflects your
inputs with color coding as shown in the following figure:

Use Oracle CQL Patterns

Oracle JDeveloper Procedures 3-17

5. Click Finish.

Oracle JDeveloper adds the Oracle CQL processing code to the processor without
overwriting any existing rules. In this example the processor.xml file contains the
following entries for the MyProcessor Oracle CQL processor

<processor>
 <name>MyProcessor</name>
 <rules>
 <query id="RecordQuery"><![CDATA[

SELECT name
 FROM MyChannel

WHERE name = “Johnson”]]>
</query>

 </rules>
</processor>

If the processor is not already in the EPN, the new processor that contains the
Oracle CQL pattern code is added to the EPN and connected to the component
indicated in the Source field.

Valid Event Sources for Views and Queries
Added to an existing Oracle CQL processor:

■ All channels that are the sources of events for the processor.

■ All caches that are the sources of events for the processor.

■ All tables that are the sources of events for the processor.

■ All hadoop:files that are the sources of events for the processor.

■ All nosql:stores that are the sources of events for the processor.

■ All views of the current processor.

Added to a new processor:

■ All channels

■ All caches

Configure an Oracle Coherence Caching System and Cache

3-18 Getting Started with Oracle Event Processing

■ All tables

■ All hadoop:files

■ All nosql:stores

3.14 Configure an Oracle Coherence Caching System and Cache
You can configure your application to use the Oracle Coherence caching system and
cache. Use this caching system if you plan to deploy your application to a multiserver
domain. When you configure with Oracle Coherence, only the first caching-system can
be configured in a server. The Oracle Event Processing server ignores other caching
systems that you have configured.

Create an Oracle Coherence Caching System and Cache
This procedure configures an Oracle Coherence caching system and cache for an
Oracle CQL processor. The cache uses an event type to specify the key properties for
locating table rows in the relational database. This caching system is advertised, which
means other applications can access the data in its caches.

1. In Oracle JDeveloper, open the EPN for your application.

2. From the Components window, select and drag the Coherence Cache System
component to an empty area on the EPN.

The Coherence Cache System Step 1 of 4 dialog displays with the following
defaults:

Cache System ID: coherence-caching-system
Configuration location: coherence-cache-config.xml

The coherence-cache-config.xml file is a per-application configuration file. It
contains individual cache information in the cache-name element. When you
complete this procedure, Oracle JDeveloper places the
coherence-cache-config.xml file in the META-INF/wlevs/coherence directory of
the bundle JAR.

3. Click Next.

The Coherence Cache System - Step 2 of 4 dialog displays.

4. In the Coherence Cache System - Step 2 of 4 dialog, provide the following values:

Cache name: The name of the first cache in your Oracle Coherent caching system.
Value Type: The type for values contained in the cache. Must be a valid type name
in the event type repository.

5. Click Next.

The Coherence Cache System - Step 3 of 4 dialog displays.

Note: Before you can legally use Oracle Event Processing with
Oracle Coherence, you must obtain a valid Coherence license such as a
license for Coherence Enterprise Edition, Coherence Grid Edition, or
Oracle WebLogic Application Grid.

For more information on Oracle Coherence, see
http://www.oracle.com/technology/products/coherence/
index.html.

Configure an Oracle Coherence Caching System and Cache

Oracle JDeveloper Procedures 3-19

6. In the Coherence Cache System - Step 3 of 4 dialog, select the Advertise check
box.

Selecting the Advertise check box means that the caching system allows other
applications to access this cache system.

7. Click Next.

The Coherence Cache System - Step 4 of 4 dialog displays.

8. In the Coherence Cache System - Step 4 of 4 dialog, click Finish.

Assembly File
The assembly file contains the information you provided when you created the
caching system and cache1. This cache is advertised.

 <wlevs:cache id="cache1" value-type="TradeReport" advertise="true">
 <wlevs:caching-system ref="coherence-caching-system"/>
 </wlevs:cache>
 <wlevs:caching-system id="coherence-caching-system" provider="coherence"/>

When the cache is advertised, a component in the EPN of an application in a separate
bundle can reference the advertised cache. The following example shows how a
processor in one bundle can use the cache-source element to reference a cache source
in another bundle with a cache-id of cacheprovider:

<wlevs:processor id="myProcessor2">
<wlevs:cache-source ref="cacheprovider:cache-id"/>

</wlevs:processor>

Configuration File
The coherence-cache-config.xml file is the basic Oracle Coherence configuration file
and must conform to the Oracle Coherence DTDs, as is true for any Oracle Coherence
application.

Note: When you change the id setting for a coherence cache in the
EPN diagram, the id changes in the assembly file and in the
coherence-cache-config.xml file. However, if you change the id setting
in the assembly file source editor, the id changes in the assembly file
only. In this case, you must manually change the cache-name setting in
the coherence-cache-config.xml to match the id setting in the
assembly file. You also have to change all references to that cache.

Note: When you have Oracle Coherence caches in the EPN assembly
files of one or more applications deployed to the same Oracle Event
Processing server, never configure multiple instances of the same
cache with a loader or a store.

You can inadvertently do this by employing multiple applications that
each configure the same Oracle Coherence cache with a loader or store
in their respective EPN assembly file. If you configure multiple
instances of the same cache with a loader or a store, Oracle Event
Processing throws an exception.

Configure an Oracle Coherence Caching System and Cache

3-20 Getting Started with Oracle Event Processing

See the Oracle Coherence documentation for information about
coherence-cache-config.xml:
http://www.oracle.com/technology/products/coherence/index.html.

An Oracle Event Processingn Oracle Coherence factory must be declared when you
use Spring to configure a loader or store for a cache. You specify the factory with the
cachestore-scheme element and include a factory class that enables Oracle Coherence
to call into Oracle Event Processing and retrieve a reference to the loader or store that
is configured for the cache. The only difference between configuring a loader or store
is that the method-name element has a value of getLoader when a loader is used and
getStore when a store is being used. You pass the cache name to the factory as an
input parameter.

<cache-config>
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>myCoherenceCache</cache-name>
 <scheme-name>new-replicated</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>myLoaderCache</cache-name>
 <scheme-name>test-loader-scheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>myStoreCache</cache-name>
 <scheme-name>test-store-scheme</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>
 cache1
 </cache-name>
 <scheme-name>
 new-replicated
 </scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>
 <caching-schemes>
 <replicated-scheme>
 <scheme-name>new-replicated</scheme-name>
 <service-name>ReplicatedCache</service-name>
 <backing-map-scheme>
 <class-scheme>
 <scheme-ref>my-local-scheme</scheme-ref>
 </class-scheme>
 </backing-map-scheme>
 </replicated-scheme>
 <class-scheme>
 <scheme-name>my-local-scheme</scheme-name>
 <class-name>com.tangosol.net.cache.LocalCache</class-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>
 </class-scheme>
 <local-scheme>
 <scheme-name>test-loader-scheme</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>

Configure an Oracle Coherence Caching System and Cache

Oracle JDeveloper Procedures 3-21

<!-- A cachestore-scheme element that gets a loader starts here -->
 <cachestore-scheme>
 <class-scheme>
 <class-factory-name>com.bea.wlevs.cache.coherence.configuration.SpringFactory
 </class-factory-name>
 <method-name>getLoader</method-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>myCoherenceCache</param-value>
 </init-param>
 <init-param>
 <param-type>
 java.lang.String
 </param-type>
 <param-value>
 cache1
 </param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 <!-- The cachestore-scheme element ends here -->
 </local-scheme>

 <local-scheme>
 <scheme-name>test-store-scheme</scheme-name>
 <eviction-policy>LRU</eviction-policy>
 <high-units>100</high-units>
 <low-units>50</low-units>

<!-- A cachestore-scheme element that gets a store starts here -->
 <cachestore-scheme>
 <class-scheme>
 <class-factory-name>com.bea.wlevs.cache.coherence.configuration.SpringFactory
 </class-factory-name>
 <method-name>getStore</method-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>myCoherenceCache</param-value>
 </init-param>
 <init-param>
 <param-type>
 java.lang.String
 </param-type>
 <param-value>
 cache1
 </param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 <!-- The cachestore-scheme element ends here -->
 </local-scheme>
 </caching-schemes>
</cache-config>

Configure a Local Caching System and Cache

3-22 Getting Started with Oracle Event Processing

tangosol-coherence-override.xml File (optional)
The tangosol-coherence-override.xml file is a global per-server file. It contains what
is referred to as the operational configuration in the Oracle Coherence documentation.
This file contains global, server-wide configuration settings for Oracle Coherence
caching. You create this file in an XML editor and put it in the Oracle Event Processing
server config directory for the server you want to configure.

Add the following XML to the Oracle Coherence configuration file to reference the
tangosol-coherence-override.xml file. Include the cluster-name element to prevent
Oracle Coherence from attempting to join existing Oracle Coherence clusters when
Oracle Event Processing starts up. This can cause problems and sometimes prevent
Oracle Event Processing from starting.

...
<coherence xml-override="/tangosol-coherence-override.xml">
<cluster-config>
<member-identity>
<cluster-name>com.bea.wlevs.example.provider</cluster-name>

</member-identity>
...
</coherence>

For more information about Oracle Event Processing clusters, see Oracle Fusion
Middleware Administering Oracle Event Processing.

3.15 Configure a Local Caching System and Cache
You can configure your application to use the Oracle Event Processing local caching
system and cache. The Oracle Event Processing local caching system is appropriate
when you do not plan to deploy your application to a multiserver domain. If you plan
to deploy your application to a multiserver domain, use an Oracle Coherence cache.

Create a Local Caching System and Cache
This procedure creates a local Oracle Event Processing cache that is advertised.

1. In Oracle JDeveloper, open the EPN for your application.

2. From the Components window, drag the Local Cache System component to an
empty area on the EPN.

The Local Cache System - Step 1 of 5 dialog displays.

3. In the Local Cache System - Step 1 of 5 dialog, provide the following values:

Cache System ID: A unique ID to identify this local cache system.
File name: The name of the configuration file. The default is processor.xml. You
might want to name this file cache.xml or something similar.

4. Click Next.

The Local Cache System - Step 2 of 5 dialog displays.

5. In the Local Cache System - Step 2 of 5 dialog, use the Add (+) or Choose button
to specify a class that implements the com.bea.wlevs.cache.spi.CachingSystem
interface.

6. In the Local Cache System - Step 2 of 5 dialog, select the Advertise check box.

Note: Do not include the tangosol-coherence-override.xml file
when you use Oracle Coherence for clustering.

Debug Java Classes

Oracle JDeveloper Procedures 3-23

Selecting the Advertise check box means that the caching system allows other
applications to access this cache system.

7. Click Next.

The Local Cache System - Step 3 of 5 dialog displays.

8. In the Local Cache System - Step 3 of 5 dialog, provide the following values:

Cache name: The name of the first cache in your Oracle Coherent caching system.
Value Type: The event type into which you want to load the database values.

9. Click Next.

The Local Cache System - Step 4 of 5 dialog displays

10. In the Local Cache System - Step 4 of 5 dialog, accept the defaults or provide the
values you want.

11. Click Finish.

Assembly File
The assembly file has the values you specified when you created the local caching
system.

<wlevs:cache id="localcache" value-type="HelloWorldEvent">
 <wlevs:caching-system ref="caching-system"/>
 </wlevs:cache>
 <wlevs:caching-system id="caching-system" class="hellowworld.MyClass"
advertise="false"/>

Configuration File
The configuration file has the values you specified when you created the cache.

 <caching-system>
 <name>caching-system</name>
 <cache>
 <name>localcache</name>
 <max-size>64</max-size>
 <eviction-policy>LFU</eviction-policy>
 </cache>
 </caching-system>

3.16 Debug Java Classes
You can debug the Java classes in your Oracle Event Processing application on a local
or remote Oracle Event Processing server.

3.16.1 Debug on a Local Oracle Event Processing Server
■ Create a Server Connection

■ Use the LocalCon1 Connection for the Project

■ Start the Server and Run the LoclCon1 in Debug Mode

■ Set Breakpoints

■ Deploy the Project

■ Debug the Java Class

Debug Java Classes

3-24 Getting Started with Oracle Event Processing

Create a Server Connection
1. Select File > New > From Gallery.

The New Gallery dialog displays.

2. In the New Gallery dialog in the left window, select Categories > General >
Connections.

3. In the New Gallery dialog in the right window, select OEP Connection.

4. In the Create OEP Server Connection dialog, complete the information.

OEP Server Connection Name: LocalCon1
OEP Server Home Path: /Oracle/Middleware/my_oep/
Use Default Values: Unchecked.
OEP Server Projects Directory: user_projects/domains/
 basicapp_domain/defaultserver
Use Default Values: Checked
 Host: 127.0.0.1
 Port: 9002
Use Default Values: Unchecked
 Username: oepadmin
 User Password: welcome1
Additional Parameters for OEP Server: blank

Use the LocalCon1 Connection for the Project
You can use the LocalCon1 connection on a new project or change the properties on an
existing project to use the LocalCon1 connection.

If you just want to see how this works, create a HelloWorld Oracle Event Processing
project as follows:

1. In Oracle JDeveloper, select File > New > Project.

2. In the New Gallery dialog, select OEP Project and click OK.

3. In the Create OEP Project wizard, provide HelloWorldProject for the name, select
OEP Suite and click Next.

4. In the Configure Java Settings dialog, click Next to accept the defaults.

5. In the Configure OEP technology settings dialog in the OEP Application
Template Name drop-down list, select HelloWorld.

6. In the Configure OEP technology settings dialog in the OEP Server Connections
drop-down list, select LocalCon1.

7. Click Finish.

To change the connection on an existing project to LocalCon1:

1. Right-click the project and select Project Properties from the context menu.

2. In the Project Properties dialog in the left window, select Deployment.

3. In the Deployment window, leave the User Project Settings radio button selected,
and under Deployment Profiles, select the profile you want to edit.

4. Click Edit.

5. In the Deployment Properties panel in the Connection to OEP Server drop-down
list, select LocalCon1.

6. Click OK.

Debug Java Classes

Oracle JDeveloper Procedures 3-25

Start the Server and Run the LoclCon1 in Debug Mode
1. Start the Oracle Event Processing server with the -debug option.

a. Go to /Oracle/Middleware/my_oep/user_projects/domains/
<domain>/defaultserver.

b. Execute the appropriate startup script:

Windows:

startwlevs.cmd -debug

UNIX:

./startwlevs.sh -debug

2. Right-click the project and select Project Properties from the context menu.

The following messages display in the Messages - Log window:

Listening for transport dt_socket at address 8453
8453 is the default port.

3. In the Project Properties dialog in the left window, select Run/Debug.

4. In the right panel under Run/Debug, accept the default settings and click Edit.

You can first click New to create a new Run Configuration if you want to.

5. Select Launch Settings in the left window, and in the right window, select the
Remote Debugging check box.

6. Select Tool Settings > Debugger > Remote in the left window, and in the right
panel set the host and port parameters.

In this example, the host is LocalHost and the port is 8453.

7. Click OK and click OK again to dismiss the dialogs.

Set Breakpoints
1. To set breakpoints, open any Java class in the project.

In the HellowWorld project, you could open the source code file for
HelloWorldBean.java.

2. Select a method, and press F5 to toggle a breakpoint to on.

In the HelloWorldBean. java source code select the onInsertEvent method.

Deploy the Project
1. Right-click the project and select Deploy > New Deployment Profile from the

context menu.

2. In the Create Deployment Profile dialog in the Profile Type drop-down list, select
OEP Project Deployment Profile.

3. In the Create Deployment Profile dialog in the Deployment Profile Name field,
provide a unique name for the profile.

For the HellowWorld project, the profile name can be HelloWorldProfile.

4. Click OK.

5. In the Deployment Properties dialog, check that the information is correct.

Make any corrections that are needed.

Testing with the Event Inspector Service

3-26 Getting Started with Oracle Event Processing

6. Click OK.

Debug the Java Class
1. Select the project you want to debug, and Shift + F9.

The Attach to JPDA Debugger dialog displays.

You can also select the Debug button on the tool bar (red ladybug icon).

2. In the Attach to JPDA Debugger dialog, check that the information is correct.

3. Click OK.

The Debugging <Project-Name> - Log panel prints messages that show that the
debugger is connected to the server.

3.16.2 Remote Oracle Event Processing Server
Debugging remote standalone OEP is similar to "Debug on a Local Oracle Event
Processing Server." except that you have to run Oracle Event Processing server in
debug mode manually with the -debug flag on the remote host. When you define a
connection to the debugger in Oracle JDeveloper, provide the address of the remote
host.

3.17 Testing with the Event Inspector Service
You configure the Event Inspector service with a local or remote HTTP
publish-subscribe server in a component configuration file. You configure the Event
Inspector HTTP publish-subscribe server in a component configuration file. When
there is only one HTTP publish-subscribe server defined in the server, and you do not
specify a local or remote HTTP publish-subscribe server, the Event Inspector service
uses the local HTTP publish-subscribe server by default.

Local HTTP Publish-Subscribe Server
1. Open the EPN editor in the Oracle Event Processing IDE.

2. Right-click any component with a configuration file associated with it and select
Go to Configuration Source.

3. Add the event-inspector name element as the following example shows.

<event-inspector>
<name>myEventInspectorConfig</name>
<pubsub-server-name>myPubSub</pubsub-server-name>

</event-inspector>

The pubsub-server-name value myPubSub is the value of the http-pubsub element
name child element as defined in the local Oracle Event Processing server file as
the following example shows.

<http-pubsub>
<name>myPubSub</name>
<path>/pubsub</path>
<pub-sub-bean>
<server-config>
<supported-transport>
<types>
<element>long-polling</element>

</types>
</supported-transport>

Testing with the Event Inspector Service

Oracle JDeveloper Procedures 3-27

<publish-without-connect-allowed>true</publish-without-connect-allowed>
</server-config>
<channels>

...
</channels>

</pub-sub-bean>
</http-pubsub>

4. Save and close the file.

Remote HTTP pub-sub Server
You configure the Event Inspector service with a remote HTTP pub-sub server in a
component configuration file. Alternatively, you can configure a local HTTP pub-sub
server.

1. Open the EPN editor in the Oracle Event Processing IDE.

2. Right-click any component with a configuration file associated with it and select
Go to Configuration Source.

3. Add an event-inspector element as the following example shows.

<event-inspector>
 <name>myEventInspectorTraceConfig</name>
 <pubsub-server-url>http://HOST:PORT/PATH</pubsub-server-url>
</event-inspector>

HOST: The host name or IP address of the remote Oracle Event Processing server.

PORT: The remote Oracle Event Processing server netio port as defined in the
remote Oracle Event Processing server file. Default: 9002.

PATH: The value of the http-pubsub element path child element as defined in the
remote Oracle Event Processing server file.

Given the http-pubsub configuration that the example shows, a valid
pubsub-server-url would be as follows:

http://remotehost:9002/pubsub

The pubsub-server-name value myPubSub is the value of the http-pubsub element
name child element as defined in the local Oracle Event Processing server file as
the following example shows.

<http-pubsub>
<name>myPubSub</name>
<path>/pubsub</path>
<pub-sub-bean>
<server-config>
<supported-transport>
<types>
<element>long-polling</element>

</types>
</supported-transport>
<publish-without-connect-allowed>true</publish-without-connect-allowed>

</server-config>
<channels>

...
</channels>

</pub-sub-bean>
</http-pubsub>

Start and Stop Oracle JDeveloper and Servers

3-28 Getting Started with Oracle Event Processing

4. Save and close the file.

3.18 Start and Stop Oracle JDeveloper and Servers
You can start and stop Oracle WebLogic Server from within Oracle JDeveloper. You
can start and stop Oracle Event Processing from the command line or from within
Oracle JDeveloper.

Start Oracle JDeveloper
1. Go to /Oracle/Middleware/soa/jdeveloper/jdev/bin.

2. Type ./jdev.

The Select Role dialog displays.

3. In the Select Role dialog, select Studio Developer (All Features) and click OK.

Wait a few moments while Oracle JDeveloper starts.

Stop Oracle JDeveloper
1. Save all of your work.

2. Select File > Exit.

Start Oracle WebLogic Server
Oracle WebLogic Server is integrated with Oracle JDeveloper so that you can readily
deploy and test an Oracle Event Processing application sends events to and receives
from Oracle SOA Suite.

1. In Oracle JDeveloper, select Run > Start Server Instance.

2. If a Create Default Domain dialog displays, accept the defaults and enter and
confirm a domain password that is at least 7 characters long with at least one
numeric character. For example, welcome1.

Oracle WebLogic Server prints messages in the message area while it takes a few
minutes to come up. The server is up and running when you see the message: SOA
Platform is running and accepting requests and a red box below the menu
bar and next to the search field at the top of the menu area.

Stop Oracle WebLogic Server
1. Click the red box below the menu bar or next to the search field at the top of the

message area.

2. In the red box drop-down list, select IntegratedWebLogicServer.

Start Oracle Event Processing
1. Go to /Oracle/Middleware/my_oep/user_projects/domains/

<domain>/defaultserver.

2. Execute the appropriate startup script:

a. Windows:

startwlevs.cmd

b. UNIX:

./startwlevs.sh

Start and Stop Oracle JDeveloper and Servers

Oracle JDeveloper Procedures 3-29

The terminal panel displays messages as the server starts. When you see, <The
application context for “com.bea.wlevs.dataservices” was started
successfully >, the Oracle Event Processing server is ready.

Alternately, within Oracle JDeveloper you can start Oracle Event Processing after you
have defined a connection to an Oracle Event Processing server. Then, you can find a
way to start the Oracle Event Processing server under Application Resources when
you expand the Connections folder.

Stop Oracle Event Processing
1. Go to /Oracle/Middleware/my_oep/user_projects/domains/

<domain>/defaultserver.

2. Execute the appropriate stop script:

a. Windows:

stopwlevs.cmd

b. UNIX:

./stopwlevs.sh

The terminal panel displays messages as the server starts. When you see, <The
application context for “com.bea.wlevs.dataservices” was started
successfully >, the Oracle Event Processing server is ready.

Start and Stop Oracle JDeveloper and Servers

3-30 Getting Started with Oracle Event Processing

4

Create a Basic Application 4-1

4Create a Basic Application

This chapter walks through building a basic Oracle Event Processing application. The
steps include explanations of key Oracle Event Processing application programming
concepts.

This chapter covers the following topics:

■ Section 4.1, "About the Basic Application"

■ Section 4.2, "Before You Begin"

■ Section 4.3, "Create the Application"

■ Section 4.4, "TradeReport Project Files"

■ Section 4.5, "Create an Event Type to Carry Event Data"

■ Section 4.6, "Add the csvgen Adapter to Receive Simulated Event Data"

■ Section 4.7, "Add an Output Channel to Convey Events"

■ Section 4.8, "Create a Listener Event Sink to Receive and Report Events"

■ Section 4.9, "Add an Oracle CQL Processor to Filter Events"

■ Section 4.10, "Add an Output Channel"

■ Section 4.11, "Deploy"

■ Section 4.12, "Set Up and Start the Load Generator"

■ Section 4.13, "Stop the Load Generator and the Server"

4.1 About the Basic Application
The basic Oracle Event Processing application models a simple stock trade alert
system. The application receives example data about stock trades, monitors the data
for certain characteristics, and based on the results, prints some of the data to the
console. The following illustration shows the finished event processing network (EPN)
diagram for the application:

Before You Begin

4-2 Getting Started with Oracle Event Processing

4.2 Before You Begin
This walkthrough requires that you have downloaded and installed the 12c version of
Oracle Event Processing including Oracle JDeveloper and the Oracle Event Processing
JDeveloper plug-in. Follow the installation instructions that come with the download
to ensure you have the correct setup.

Make sure you set the JAVA_HOME variable to point to JDK7_u55 or above and set the
PATH variable to point to the bin directory under your JDK installation:

export JAVA_HOME=<path to installation directory>
export PATH=${JAVA_HOME}/bin:${PATH}
In this walkthrough, the installation directory is /Oracle/Middleware/my_oep/.

Optionally, you can set the WLEVS_HOME variable to point to the installation directory.
The Oracle Event Processing JDeveloper plug-in uses this variable to detect the local
Oracle Event Processing server.

4.3 Create the Application
In Oracle JDeveloper an application is the highest level in the control structure. An
application is a view of all the objects you need while you work. An application keeps
track of all your projects while you develop programs.

A project is a logical container for a set of files that define an Oracle JDeveloper
program or portion of a program. A project can contain files that represent different
tiers of a multi-tier application or different subsystems of a complex application.
Project files can reside in any directory and still be contained within a single project.

Start Oracle JDeveloper
1. Go to/Oracle/Middleware/my_oep/jdeveloper/jdev/bin.

2. Type ./jdev.

The Select Role dialog displays.

3. In the Select Role dialog, select Studio Developer (All Features) and click OK.

Wait a few moments while Oracle JDeveloper starts.

Create the TradeReport Application
1. In Oracle JDeveloper, Click the New Application button.

The New Gallery dialog displays.

2. In the New Gallery dialog, select OEP Application and click OK.

The Create OEP Application screen displays.

3. In the Create OEP Application Step 1 of 4 dialog, enter the following values:

Application Name: TradeReport
Directory: Accept the default
Application Package Prefix: Leave blank

4. Click Next.

Note: This walkthrough introduces features specific to Oracle Event
Processing and assumes that you are familiar with basic Java
programming.

TradeReport Project Files

Create a Basic Application 4-3

The Create OEP Application - Step 2 of 4 screen displays.

5. In the Create OEP Application - Step 2 of 4, dialog, enter the following values:

Project Name: TradeReport
Directory: Accept the default
Project Features: OEP Suite

6. Click Next.

The Create OEP Application - Step 3 of 4 dialog displays.

7. In the Create OEP Application - Step 3 of 4 dialog, click Next to accept the
defaults:

The Create OEP Application - Step 4 dialog displays.

8. In the Create OEP Application - Step 4 of 4 dialog, examine the default values:

Empty OEP Project: Provides the basic structure of an Oracle Event Processing
application.

OEP Server Connections: Leave blank. In a later step, you create the Oracle Event
Processing server connection.

9. Click Finish to accept the defaults.

The Oracle Event Processing TradeReport application and project displays.

4.4 TradeReport Project Files
The TradeReport application contains the Projects and Applications Resources
windows. The Projects window lists the TradeReport project. The TradeReport project
contains an OEP Content folder with the spring and wlevs subfolders. On the right
side of Oracle JDeveloper under IDE Connections is the Resources window.

Projects Window
■ spring subfolder that contains the TradeReport.context.xml assembly file. The

assembly file conforms to the Spring framework and contains the contents and
structure of the TradeReport EPN.

The assembly file also contains the default configuration for each EPN stage. This
default configuration cannot be changed at run time without redeploying the
application. As you add and connect stages on the EPN diagram, Oracle
JDeveloper captures your work in this file. You can also edit this file manually.

■ wlevs subfolder that contains the default processor.xml configuration file. The
files in the wlevs folder describe components with configurations that can be
edited at runtime with Oracle Event Processing Visualizer. As you use Oracle
JDeveloper to create components, you can place their configurations in the
processor.xml file or specify another component configuration file to group
component types in the same file. You can also edit configuration files manually.

■ EPN diagram The EPN diagram represents the components that make up the
application. Event data enters your application from the left of the diagram, and
moves to the right from stage to stage.

Note: The EPN assembly file XML schema extends the Spring
framework configuration file. See the Spring website at
http://www.springsource.org/spring-framework.

Create an Event Type to Carry Event Data

4-4 Getting Started with Oracle Event Processing

The EPN diagram shows a graphical representation of the underlying EPN
configuration. When you add a component to the EPN, Oracle JDeveloper writes
information to the TradeReport.context.xml assembly file and the configuration
file.

■ MANIFEST.MF that describes the contents of the OSGi bundle that you deploy to
the Oracle Event Processing server.

Resources Window
The Resources window, which is on the right side of Oracle JDeveloper under IDE
Connections, provides information about running server connections.

4.5 Create an Event Type to Carry Event Data
Within an Oracle Event Processing application, every event has an event type. The
event type is a structure that defines a particular kind of event data in terms of the set
of values the event can take, and the operations that can be performed on that data.

Oracle Event Processing supports several data structures for creating a new event
type. These data structures are JavaBean classes, tuples, and java.util.Map classes. A
JavaBean class is the best practice structure for new event types and is used in this
walkthrough to define trade events.

As raw event data comes into the Oracle Event Processing application, the application
binds that data to an event of a particular event type. You define the event type in
terms of the set of data it can hold and the required type for each data in the set.

In this walkthrough, the event data comes into the application from a CSV file in
consistent rows of comma-separated values as follows:

IBM,15.5,3.333333333,3000,15
SUN,10.8,-1.818181818,5000,11
ORCL,14.1,0.714285714,6000,14
GOOG,30,-6.25,4000,32
YHOO,7.8,-2.5,1000,8

The data columns are not labeled in the CSV file, but if they were labeled, they would
have the corresponding Java data type shown in Table 4–1. The Java data types that
define an event type are referred to as properties in Oracle Event Processing.

Create the TradeEvent JavaBean
1. Select the TradeReport project.

Oracle JDeveloper highlights the TradeReport project.

2. Select File > New > From Gallery.

The New Gallery dialog displays.

Table 4–1 Mapping Event Data to Event Types

Possible Columns Java Data Type

Stock Symbol String

Price per share Double

Percent change Double

Volume of shares transacted Integer

Last price Double

Create an Event Type to Carry Event Data

Create a Basic Application 4-5

3. In the New Gallery dialog, select General in the left panel, Java Class in the right
panel, and click OK.

The Create Java Class dialog displays.

4. In the Create Java Class dialog, enter TradeEvent in the Name field, and enter or
review the following default settings:

Name: TradeEvent
Package: tradereport
Extends: java.lang.Object
Access Modifiers: public
Other Modifiers: <None>
Constructors from Superclass: checked
Implement Abstract Methods: checked

5. Click OK.

Oracle JDeveloper adds the tradereport.TradeEvent JavaBean class to the Project
under the Application Sources folder. The stub code displays in the Oracle
JDeveloper center window in its own tab:

package tradereport;

public class TradeEvent {
 public TradeEvent() {
 super ();
 }
}

Create Private Variables and Accessor Methods
1. In the TradeEvent class, add private variables for each of the properties (Java data

types) as shown in the following example.

package tradereport;

public class TradeEvent {
 // One variable for each field in the event data.
 private String symbol;
 private Double price;
 private Double lastPrice;
 private Double percChange;
 private Integer volume;
 public TradeEvent () {
 super();
 }
}

2. To generate the accessor methods, right click anywhere in the source editor.

The source editor pop-up menu displays.

3. In the source editor pop-up menu, select Generate Accessors.

The Generate Accessors dialog displays.

4. In the Generate Accessors dialog, click the Select All button and click OK.

5. Close the TradeEvent.java tab and save the file.

Add the csvgen Adapter to Receive Simulated Event Data

4-6 Getting Started with Oracle Event Processing

Configure the TradeEvent Event Type
1. In the TradeReport project under the OEP Content folder, double-click the EPN

Diagram.

The EPN diagram displays in the center window and is empty.

2. Below the EPN diagram select the Event Types tab.

The Event Type Definitions window displays the TradeReport.context.xml folder
with Add (+) and Delete (x) buttons at the top.

3. In the Event Type Definitions window, select the TradeReport.context.xml folder
and click Add.

Controls to define the event type display below Event Type Details on the right.

4. In the Type Name field enter TradeEvent.

The event type name does not have to be similar to the JavaBean class name, but
by making them similar, it is easier to track which event types go with which
classes.

5. Select the Properties defined in Java bean radio button and enter or use search to
the name of the JavaBean in the Class box.

The name of the JavaBean is tradereport.TradeEvent.

6. Close the EPN diagram editor and save the file.

View the EPN Assembly File
1. In the left panel under TradeReport > OEP Content > Spring, double-click

TradeReport.context.xml.

The TradeReport.context.xml file displays in the Source tab.

2. In the TradeReport.context.xml file at the bottom of the file, look for the following
lines:

<wlevs:event-type-repository>
 <wlevs:event-type type-name="TradeEvent">
 <wlevs:class>tradereport.TradeEvent</wlevs:class>
 </wlevs:event-type>
</wlevs:event-type-repository>

Notice that Oracle Event Processing manages event types in an event type repository,
and that the TradeEvent event type contains (maps to) the tradereport.TradeEvent
class.

4.6 Add the csvgen Adapter to Receive Simulated Event Data
Adapters manage data flowing into and out of the EPN. This example uses a csvgen
adapter that works with the load generator utility to simulate a data feed to test your
application. The load generator reads an ASCII file that contains the sample data feed
information and sends each line of data in order to a port. The csvgen adapter listens
for data at the same port. The csvgen adapter logic translates data read from the CSV
file into an event that has the TradeEvent event type.

Note: The Properties defined declaratively radio button is for
defining events as tuples.

Add the csvgen Adapter to Receive Simulated Event Data

Create a Basic Application 4-7

In this procedure, you declare the adapter and set its properties. When completed, the
EPN diagram displays the adapter to create the first stage in your TradeReport EPN.

Create the csvgen Adapter and Set Its Properties
1. Open the TradeReport > META-INF > spring > TradeReport.context.xml

assembly file.

2. Below the event-type-repository XML stanza, add the following XML to declare
the csvgen adapter.

<wlevs:adapter id=”StockTradeCSVAdapter” provider=”csvgen”>
 <wlevs:instance-property name=”port” value =”9200” />
 <wlevs:instance-property name=”EventTypeName” value=”TradeEvent” />
 <wlevs:instance-property name=”eventPropertyNames”
value=”symbol,price,percChange,volume,lastPrice” />
</wlevs:adapter>

The XML stanza declares an instance of the csvgen adapter and assigns to it three
properties that configure it for use in your EPN. The adapter uses the properties to
map from incoming raw event data to the properties of the event type you
defined.

id: A unique identifier for the adapter. The provider attribute value must be
csvgen to refer to the csvgen implementation included with Oracle Event
Processing.

port: Tells the adapter instance what port to listen on for incoming event data. The
value here, 9200, corresponds to the port number to which the load generator will
send event data (more on that later).

The eventTypeName: Tells the instance the name of the event type to which
incoming event data should be assigned. Here, you give the name of the
TradeEvent type you defined earlier.

eventPropertyNames. Tells the instance the names of the event type properties to
which data should be assigned. Notice in this case that the eventPropertyNames: A
comma-separated list of the same properties you defined in the JavaBean for the
event type. In order for the csvgen adapter to map from incoming values to event
type properties, the names here must be the same as your event type and must be
in the same order as corresponding values for each row of the CSV file.

3. Save and close the TradeReport.context.xml assembly file.

Note: Before you deploy an application to the final production
environment, you must switch to an input adapter that can read the
type of incoming data your application will receive in production.

See Oracle Fusion Middleware Developing Application for Oracle Event
Processing for information about the available input and output
adapters.

Note: No white spaces allowed between the instance-property
name values. The order of the name values must match the order in the
StockData.csv files described in View the Test Data.

Add an Output Channel to Convey Events

4-8 Getting Started with Oracle Event Processing

The StockTradeCSVAdapter displays on the EPN diagram to create the first stage
in your TradeReport EPN network.

4. Open the EPN diagram to see the StockTradeCSVAdapter:

4.7 Add an Output Channel to Convey Events
A channel is a conduit that uses logic to transfer events from one stage in the EPN to
the next stage. In this step, you add a channel to carry newly generated events from
the StockTradeCSVAdapter to the next stage.

Create the AdapterOutputChannel
1. With the EPN Diagram open, go to Basic Components and drag the Channel

component to an empty space on the EPN diagram.

The New Channel dialog displays.

2. In New Channel dialog, enter the following values:

Channel ID: AdapterOutputChannel.
Event Type: TradeEvent.

3. Click OK.

The AdapterOutputChannel component displays on the EPN diagram.

The AdapterOutputChannel conveys events of type TradeEvent to the next stage
in the EPN diagram. Recall that the TradeEvent event type is implemented with
the TradeEvent JavaBean class.

Connect the Adapter to the Channel
1. Click the StockTradeCSVAdapter icon and drag it to the AdapterOutputChannel

icon.

This action creates a connecting line between the two icons and places the
AdapterOutputChannel to the right of the StockTradeCSVAdapter, which
indicates that events flow from the adapter to the channel.

2. Double-click the AdapterOutputChannel icon to view the
TradeReport.context.xml assembly file. A blinking cursor displays next to the line
with the channel configuration.

<wlevs:adapter id="StockTradeCSVAdapter" provider="csvgen">
 <wlevs:listener ref="AdapterOutputChannel"/>
 <wlevs:instance-property name="eventType" value="TradeEvent"/>
 <wlevs:instance-property name="eventPropertyNames" value="symbol, price,
 lastPrice, percChange, volume" />
 </wlevs:adapter>
 <wlevs:channel id="AdapterOutputChannel" event-type="TradeEvent"/>

Create a Listener Event Sink to Receive and Report Events

Create a Basic Application 4-9

When you created the connection between the adapter and the channel, Oracle
JDeveloper added a reference to a listener. The listener ref attribute is set to the id
attribute of the channel element meaning that the channel listens for events that
come from the adapter.

3. Close the TradeReport.context.xml tab and save the file.

4.8 Create a Listener Event Sink to Receive and Report Events
Next you add a listener event sink that receives trade events from the channel and
checks the information in those events. A listener event sink is a Java class that
implements logic to listen for and work on trade events. This type of Java class is also
called a listener Java class.

The following procedure shows you how to create a listener event sink that listens for
trade events, gets the stock symbol and trade volume information, and prints the stock
symbol and trade volume information to the console.

Create the Listener Event Sink
1. Select the TradeReport project and select File > New > Java Class.

2. In the Create Java Class dialog, enter TradeListener in the Name field and review
the following settings:

Name: TradeListener
Package: tradereport
Extends: java.lang.Object
Access Modifiers: public
Other Modifiers: <NONE>
Constructors from Superclass: Checked
Implement Abstract Methods: Checked

3. In the Create Java Class dialog under the Implements area, click the Add (+)
button to select the interface your listener needs to implement to be an event sink.

4. In the Class Browser dialog, use either the Search tab or the Hierarchy tab to
locate the com.bea.wlevs.ede.api.StreamSink class.

5. Under Matching Class, highlight the com.bea.wlevs.ede.api.StreamSink class and
click OK.

You return to the Create Java Class dialog.

6. In the Create Java Class dialog, click OK.

Oracle JDeveloper adds the TradeListener JavaBean to the project under the
Application Sources folder. The stub code displays in the Oracle JDeveloper
middle panel.

package tradereport;

import com.bea.wlevs.ede.api.EventRejectedException;
import com.bea.wlevs.ede.api.StreamSink;

public class TradeListener implements StreamSink {
 public TradeListener() {
 super();
 }
 @Override
 public void onInsertEvent(Object object) throws EventRejectedException {

Create a Listener Event Sink to Receive and Report Events

4-10 Getting Started with Oracle Event Processing

 // TODO Implement this method
 }
}

7. In the TradeListener class, edit the onInsertEvent method as follows:

@Override
public void onInsertEvent(Object event) throws EventRejectedException {

 if (event instanceof TradeEvent){
 String symbolProp = ((TradeEvent) event).getSymbol();
 Integer volumeProp = ((TradeEvent) event).getVolume();
 System.out.println(symbolProp + ":" + volumeProp);
 }
}

The onInsertEvent method listens for trade events, and when it hears a
TradeEvent, it calls the tradereport.TradeEvent get methods to get the stock
symbol and the trade volume, and to print the stock symbol and trade volume
information to the console.

8. Close the TradeListener.java tab and save the file.

Add the Event Sink to the EPN Diagram as an Event Bean
1. Open the EPN Diagram.

2. Under Base Components, drag the Event Bean component onto an empty area of
the EPN Diagram.

The New Event Bean wizard displays.

3. In the EventBean ID field, enter ListenerBean.

4. In the EventBean class field, enter tradereport.TradeListener and click OK

5. In the EPN diagram, select AdapterOutputChannel and drag it to ListenerBean
to connect them.

 The connection enables trade events to pass from the channel to the listener bean.

6. Double-click the AdapterOutputChannel.

The TradeReport.context.xml file displays with a blinking cursor next to the
channel line. The ref attribute of the channel listener points to ListenerBean.

<wlevs:channel id="AdapterOutputChannel" event-type="TradeEvent">
 <wlevs:listener ref="ListenerBean" />
</wlevs:channel>
<wlevs:event-bean id="ListenerBean"
 class="tradereport.TradeEvent" />

7. Close the TradeReport.context.xml tab and save the file.

Add an Oracle CQL Processor to Filter Events

Create a Basic Application 4-11

4.9 Add an Oracle CQL Processor to Filter Events
Next add an Oracle CQL processor to filter events based on certain criteria. The Oracle
CQL processor goes between AdapterOutputChannel and an output channel that you
create in the next section.

The Oracle CQL processor contains Oracle CQL code that you write. The Oracle CQL
code queries the events sent to the processor from AdapterOutputChannel. The query
retrieves only those trade events that have a volume that is greater than 4000. Oracle
Event Processing passes the retrieved events to the output channel, which then sends
the events to ListenerBean for processing. Recall that ListenerBean listens for trade
events, gets the stock symbol and trade volume information, and prints the stock
symbol and trade volume information to the console.

The CQL query in Example 4–1 selects the symbol and volume properties from each
incoming trade event, tests the volume property for a value higher than 4000, and
outputs a set of 1 qualifying event at a time. The NOW operator creates a window of
time that contains the event that happened at the last tick of the system.

Example 4–1 GetHighVolume Query Element with CQL Code

<query id="GetHighVolume"><![CDATA[
 select trade.symbol, trade.volume
 from AdapterOutputChannel [now] as trade
 where trade.volume > 4000
]]>
</query>

Add a GetHighVolume Processor and Query
1. In the Components window under Basic Components, drag the Processor

component to an empty space on the EPN diagram.

The New Processor dialog displays.

2. In the New Processor dialog in the Processor ID field, enter
GetHighVolumeProcessor, keep the default File name, which is processor.xml,
and click OK.

Oracle Event Processing requires that you have at least one configuration file with
the name processor.xml that contains the processor configuration. You can add
other component configurations to this file or create additional configuration files.

3. Right-click the connector from the AdapterOutputChannel icon to the
ListenerBean icon and click Delete.

4. Click the AdapterOutputChannel component, and drag from it to the
GetHighVolumeProcessor icon.

Creating this connection makes the Oracle CQL processor aware of the channel.
After you connect the channel to the Oracle CQL processor, you can refer to the
channel by its ID value in the Oracle CQL code.

Note: There are no configuration file entries for the channel beyond
the default configuration. You can edit the processor.xml file to
customize the channel configuration or create a separate configuration
file, such as channel.xml, for channels and add custom channel
configuration to it. See Section 3.4.4, "Add Configuration Settings to a
Component."

Add an Output Channel

4-12 Getting Started with Oracle Event Processing

5. Right-click the GetHighVolumneProcessor stage.

The context menu displays.

6. From the context menu, select Go To Configuration Source.

Oracle JDeveloper opens a source editor where you place the Oracle CQL rules to
be applied to the streaming event data. The source editor provides a sample query
that you can edit or replace.

7. Replace the sample Oracle CQL code with the Oracle CQL code provided here:

You replace the sample Oracle CQL between <rules> </rules> with the
following Oracle CQL code:

<query id="GetHighVolume"><![CDATA[
 select trade.symbol, trade.volume
 from AdapterOutputChannel [now] as trade
 where trade.volume > 4000
]]>
</query>

8. Close the configuration file tab and save your work.

4.10 Add an Output Channel
1. From Base Components, drag the Channel component to an empty area on the

EPN diagram.

2. In the New Channel wizard in the Channel ID field, enter
ProcessorOutputChannel and select TradeEvent as the event type.

3. Click OK.

4. Select the GetHighVolumeProcessor component and drag it to the new channel
component to connect the Oracle CQL processor and channel.

Deploy

Create a Basic Application 4-13

5. Select the ProcessorOutputChannel component and drag it to the ListenerBean
component to connect the channel to the listener.

All of the components in the EPN diagram are now connected.

6. Double-click the ProcessorOutputChannel icon to see the channel configuration
in the TradeReport.context.xml file.

The entry for the ProcessorOutputChannel specifies that events of type
TradeEvent pass through this channel.

 <wlevs:channel id="ProcessorOutputChannel" event-type="TradeEvent">
 <wlevs:listener ref="ListenerBean"/>
 <wlevs:source ref="GetHighVolumeProcessor"/>
 </wlevs:channel>

7. Save all of the files in the project.

4.11 Deploy
To deploy the example application for testing, perform the following actions:

■ Create an Oracle Event Processing Domain

■ Start the Oracle Event Processing Server

■ Create an Oracle Event Processing Server Connection

■ Create a Deployment Profile

■ Deploy the Application

Create an Oracle Event Processing Domain
To create a domain, start the Oracle Event Processing Configuration wizard:

1. Start the Configuration Wizard:

a. On Windows, navigate to \Oracle\Middleware\my_oep\oep\common\bin\
and type config.cmd.

b. On UNIX, navigate to /Oracle/Middleware/my_oep/oep/common/bin and type
./config.sh.

The Configuration wizard Welcome screen displays.

2. On the Welcome screen, click Next.

The Choose Create or Update Domain screen displays.

3. On the Choose Create or Update Domain screen, select Create a new OEP
domain and click Next.

The Create or Update Domain screen displays.

4. In the Create or Update Domain screen, in the User Name field, enter oepadmin,
and enter and confirm the password, welcome1.

5. Click Next, accept the Configure Server defaults, and click Next.

Deploy

4-14 Getting Started with Oracle Event Processing

The Configure Domain Identity Keystore screen displays.

6. In the Configure Domain Identity Keystore screen, enter and confirm the
password welcome1 and click Next.

The Configuration Options screen displays.

7. In the Configuration Options screen, click Next to not perform any optional
configuration.

The Create OEP Domain screen displays.

8. In the Create OEP Domain screen, enter basicapp_domain and make a note of its
location.

The location will be something like /Oracle/Middleware/my_oep/user_
projects/domains.

9. Click Create, and after a few moments, click Done.

Start the Oracle Event Processing Server
1. Go to /Oracle/Middleware/my_oep/user_projects/domains/basicapp_

domain/defaultserver.

2. Execute the appropriate startup script:

a. On Windows:

prompt> startwlevs.cmd

b. On UNIX:

prompt> ./startwlevs.sh

The terminal window displays messages as the server starts. When you see, <The
application context for "com.bea.wlevs.dataservices" was started
successfully >, the Oracle Event Processing server is ready.

Create an Oracle Event Processing Server Connection
1. Select File > New > From Gallery.

The New Gallery dialog displays.

2. In the New Gallery dialog under Categories > General, select Connections.

3. In the New Gallery dialog under Items, select OEP Connection, and click OK.

The Create OEP Server Connection dialog displays.

4. In the Create OEP Server Connection dialog, provide the following information:

Connection will be created in: IDE Connections: Selected
Remote OEP Server: Not checked
OEP Server Connection Name: OEPBasicAppConnection
OEP Server Home Path: /Oracle/Middleware/my_oep/
Use Default Values: Unchecked.
 OEP Server Projects Directory: user_projects/domains/
 basicapp_domain/defaultserver
Use Default Values: Checked
 Host: 127.0.0.1
 Port: 9002
Use Default Values: Unchecked
 Username: oepadmin

Deploy

Create a Basic Application 4-15

 User Password: welcome1
Additional Parameters for OEP Server: blank

5. In the Create OEP Server Connection dialog, click Test Connection.

If you see Success in the area below the Test Connection button, you entered the
information correctly. If you see errors, correct them and test again until you see
Success.

6. When you see the Success message, click OK.

Create a Deployment Profile
1. Right-click the TradeReport project and select Deploy > New Deployment

Profile.

The Create Deployment Profile dialog displays.

2. In the Create Deployment Profile dialog, provide the following values.

Profile Type: OEP Project Deployment Profile.

Deployment Profile Name: basicapp_profile.

3. Click OK.

The Deployment Properties dialog displays.

4. In the Deployment Properties dialog, verify the information:

Connection to Local OEP Server: OEPBasicAppConnection (127.0.0.1:9002)
Symbolic Name: TradeReport.TradeReport
Bundle Name: TradeReport.TradeReport
Bundle Version: 1.0.0
OSGi JAR file:
/home/<username>/jdeveloper/mywork/TradeReport/TradeReport/deploy/ba
sicapp_profile.jar.

5. Click OK.

Deploy the Application
1. Right-click the TradeReport project.

The context menu displays.

2. In the context menu, select Deploy > basicapp_profile.

The Deployment Action dialog displays.

3. In the Deployment Action dialog, select Deploy OSGi bundle to target platform.

4. Click Next.

The Summary dialog displays.

5. In the Summary dialog, confirm the information.

6. Click Finish.

In the Deployment - Log panel at the bottom of the middle panel, messages
indicate the successful deployment.

Note: Make sure you select the correct Profile Type, which is OEP
Project Deployment Profile.

Set Up and Start the Load Generator

4-16 Getting Started with Oracle Event Processing

7. In the Resources window on the right side under IDE Connections, navigate to
OEP Server > OEPBasicAppConnection > Applications.

The BasicApplication.BasicApp[Running} connection displays.

A deployment profile creates an OSGi bundle that contains the required library JAR
file.

4.12 Set Up and Start the Load Generator
The load generator enables you to load test data so that you can see how your Oracle
Event Processing application behaves when it is deployed into production.

Normally, you start the load generator after you deploy the application. However, you
can start the load generator before you deploy, but you will get a message that there is
no listener on port 9200. The message goes away after you deploy application.

View the Test Data
1. In the text editor of your choice, open the StockData.csv file included with Oracle

Event Processing installation.

By default, the file is at the following location:

/Oracle/Middleware/my_oep/oep/utils/load-generator/StockData.csv.

2. Take a look at the StockData.csv file, which contains comma-separated values in
rows where each row represents a trade.

Verify the Load Generator Properties
1. In the text editor of your choice, open the StockData.prop files included with

Oracle Event Processing installation.

By default, the files are at the following location:

/Oracle/Middleware/my_oep/oep/utils/load-generator/StockData.prop.

2. In the StockData.prop file, verify the following properties:

■ test.csvDataFile: The name of the CSV file that the load generator reads. For
this example, the value is StockData.csv.

■ test.port: The port number to which the load generator sends event data.
This should be the port value you specified when you configured the CSV
adapter, which is 9200.

■ test.packetType: The type of data format that the load generator will handle.
For this example, the value is CSV.

The load generator requires the test.csvDataFile and test.port properties. The
other properties are optional, but you need to set at least test.packetType so that
the load generator knows that your input is in CSV form.

3. Close the StockData.prop file and save if you made any changes.

Start the Load Generator
1. Run the load generator with the StockData.prop properties file:

Note: The order of the event properties in the StockData.csv file
must match the order of event properties specified in Create the
csvgen Adapter and Set Its Properties.

Stop the Load Generator and the Server

Create a Basic Application 4-17

a. On Windows:

prompt> runloadgen.cmd StockData.prop

b. On UNIX:

prompt> ./runloadgen.sh StockData.prop

4.13 Stop the Load Generator and the Server
When you are finished with the example, you can stop the load generator and the
Oracle Event Processing server.

Stop the Load Generator
1. Change diretory to /Oracle/Middleware/my_oep/oep/utils/load-generator.

2. Type Ctrl-c

Stop the Server
1. Change directory to /Oracle/Middleware/my_oep/user_

projects/domains/basicapp_domain/defaultserver.

2. Execute the stopwlevs command.

Stop the Load Generator and the Server

4-18 Getting Started with Oracle Event Processing

5

Create a Fraud Detection Application with EDN Adapters 5-1

5Create a Fraud Detection Application with
EDN Adapters

This chapter walks through the steps to create and deploy a fraud detection
application to present two major new features in the Oracle Event Processing 12c
release. The first feature is support for the entire Oracle Event Processing application
life cycle with Oracle JDeveloper. The second feature is Event Delivery Network
(EDN) adapter support so that an Oracle Event Processing application can send events
to and receive events from Oracle SOA Suite. You create and deploy the Oracle Event
Processing fraud detection application entirely in Oracle JDeveloper.

This chapter covers the following topics:

■ Section 5.1, "Fraud Detection Scenario"

■ Section 5.2, "Before You Begin"

■ Section 5.3, "Event Delivery Network Walkthrough"

5.1 Fraud Detection Scenario
In this walkthrough, you create an Oracle Event Processing application that
implements a real-time analysis of customer orders. An email address uniquely
identifies each customer. While order data (event data) passes to the Oracle Event
processing server, an Oracle Event Processing application dynamically accesses the
data and checks for potential fraudulent activity. In this example, event patterns with
an aggregated dollar amount for orders by the same person that exceeds $1000 in any
24 hour period indicate possible fraudulent activity.

You can use this fraud detection example application as a base for future real-time
fraud detection event-based solutions. Once deployed, the Oracle Event Processing
EDN application listens for events coming from the Oracle SOA suite event network.

5.2 Before You Begin
This walkthrough assumes that you have Oracle SOA Suite and Oracle Event
Processing installed. In this walkthrough, the top-level installation directory is referred
to as /Oracle/Middleware/, the Oracle SOA Suite installation directory is referred to
as /Oracle/Middleware/my_soa, and the Oracle Event Processing installation directory is
referred to as /Oracle/Middleware/my_oep.

You should also have your JAVA_HOME variable set to point to JDK7_u55 or above, and
the PATH variable set to point to the bin directory under your JDK installation:

export JAVA_HOME=<path to installation directory>
export PATH=${JAVA_HOME}/bin:${PATH}

Event Delivery Network Walkthrough

5-2 Getting Started with Oracle Event Processing

5.3 Event Delivery Network Walkthrough
The following list outlines the high-level tasks required to develop and deploy the
Oracle Event Processing fraud detection application:

■ Start Oracle WebLogic Server

■ Copy the Artifacts Folder

■ Create an Oracle Event Processing Domain

■ Create a Java Message Service Topic.

■ Start the Oracle Event Processing Server

■ Use Oracle JDeveloper to Create An Oracle Event Processing Application

■ Deploy the Application with JDeveloper

■ Create and Deploy the Sample SOA Composite

■ Test the Fraud Detection Application

5.3.1 Start Oracle WebLogic Server
To perform the steps in the walkthrough, start Oracle JDeveloper and Oracle WebLogic
Server. Oracle JDeveloper and Oracle WebLogic Server are part of Oracle SOA Suite.

You start the Oracle Event Processing server at a later step in the walkthrough.

Start Oracle JDeveloper and Oracle WebLogicServer
1. In your work area, navigate to /Oracle/Middleware/soa/jdeveloper/jdev/bin.

2. Start Oracle JDeveloper by typing ./jdev -clean at the command line.

The Oracle JDeveloper initial screen displays.

3. In Oracle JDeveloper, select Run > Start Server Instance.

4. If a Create Default Domain dialog displays, accept the defaults and enter and
confirm a domain password that is at least 7 characters long with at least one
numeric character. For example, welcome1.

Oracle WebLogic Server prints messages in the message area while it takes a few
minutes to come up. The server is up and running when you see the message: SOA
Platform is running and accepting requests and a red box below the menu
bar and next to the search field at the top of the menu area.

5.3.2 Copy the Artifacts Folder
The OEP_Fraud_Detection_Walkthrough_Files.zip file provides supporting files that
you need for this walkthrough. The folder contains the event definition files (*.edl
and *.xsd), the sample fraud detection Oracle CQL code, and a sample SOA
Composite (EDNOEPv2). A SOA composite is a SOA application that interfaces between
Oracle SOA Suite and the EDN.

Note: Although this walkthrough introduces features specific to
Oracle Event Processing, it assumes that you are familiar with basic
Java programming.

Event Delivery Network Walkthrough

Create a Fraud Detection Application with EDN Adapters 5-3

Note that the EDL and schema (xsd) files have to be in the fixed path of the bundled
JAR file

Get the Artifacts Folder
1. Go to

http://www.oracle.com/technetwork/middleware/complex-event-pr
ocessing/overview/complex-event-processing-088095.html.

2. Locate the OEP_Fraud_Detection_Walkthrough_Files.zip file and download it to
an accessible location on your computer.

3. Unzip the zip file.

5.3.3 Create an Oracle Event Processing Domain
In this step, you use the config.sh command to start the Configuration wizard and
create a new domain for the Fraud Check application to use.

Create a New Domain
1. Navigate to your Oracle Event Processing installation to the

/Oracle/Middleware/my_oep/oep/common/bin directory.

2. In the /Oracle/Middleware/my_oep/oep/common/bin directory, type ./config.sh
to start the Configuration wizard.

The Configuration wizard Welcome screen displays.

3. On the Welcome screen, click Next.

The Choose Create or Update Domain screen displays.

4. On the Choose Create or Update Domain screen, select Create a new OEP
domain and click Next.

The Create or Update Domain screen displays.

5. In the Create or Update Domain screen, in the User Name field, enter oepadmin,
and enter and confirm the password, welcome1.

6. Click Next.

The Configure Server screen displays.

7. In the Configure Server screen, click Next to accept the defaults.

The Configure Domain Identity Keystore screen displays.

8. In the Configure Domain Identity Keystore screen, enter and confirm the
password welcome1 and click Next.

The Configuration Options screen displays.

9. In the Configuration Options screen, click Next to not perform any optional
configuration.

The Create OEP Domain screen displays.

10. In the Create OEP Domain screen, enter fraudcheck_domain and make a note of
its location.

The location will be something like /Oracle/Middleware/my_oep/user_
projects/domains.

11. Click Create, and after a few moments, click Done.

http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/complex-event-processing-088095.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/complex-event-processing-088095.html

Event Delivery Network Walkthrough

5-4 Getting Started with Oracle Event Processing

Add the EDNConnectionFactory to the Domain
1. Navigate to /Oracle/Middleware/my_oep/user_projects/domains/fraudcheck_

domain/defaultserver and open the fraudcheck_domain startwlevs.sh file with a
text editor.

2. Add the following system properties to the JAVA_HOME command line at the
bottom of the file.

The system properties go before the -jar $USER_INSTALL_DIR setting.

-Dedn.jms.topic="jms/fabric/EDNOEPTopic"
-Dedn.jms.connection-factory="jms/fabric/EDNConnectionFactory"

The final JAVA_HOME line in startwlevs.sh looks like this: (all on one line):

"$JAVA_HOME/bin/java" $JVM_ARGS $JVM_D64 $DEBUG_ARGS
 -Dwlevs.home="$USER_INSTALL_DIR"
 -Dedn.jms.topic="jms/fabric/EDNOEPTopic"
 -Dedn.jms.connection-factory="jms/fabric/EDNConnectionFactory"
 -jar "${USER_INSTALL_DIR}/bin/wlevs.jar" $ARGS

The system properties instruct the Oracle Event Processing server to use the JMS
implementation for the EDN rather than the default, which is Advanced Queuing
(AQ).

5.3.4 Create a Java Message Service Topic
A Java Message Service (JMS) topic is a mechanism for publishing messages to one or
more subscribers. Use the Oracle WebLogic Server administration console to create a
JMS topic.

Create a JMS Topic
1. In your work area, open a browser.

The browser displays.

2. In the browser URL box, type localhost:7101/console in the URL box.

The administration console login screen displays.

3. Log in to the administration console with a user name of weblogic and the
password welcome1.

The WebLogic Server Administration Console screen displays.

4. In the left panel, under Domain Structure, expand Services > Messaging > JMS
Modules.

5. In the right panel under JMS Modules, click SOAJMSModule.

The Settings for SOAJMSModule screen displays.

6. In the right panel, under Summary of Resources, click New.

The Create a New JMS System Module Resource screen displays.

7. In the Create a New JMS System Module Resource screen, select the Topic radio
button and click Next.

The Create a New JMS System Module - JMS Destination Properties screen
displays.

8. In the JMS Destination Properties in the Name field, enter EDNOEPTopic, and in
the JNDI Name field, enter jms/fabric/EDNOEPTopic.

Event Delivery Network Walkthrough

Create a Fraud Detection Application with EDN Adapters 5-5

9. Click Next.

The next Create a New JMS System Module screen displays.

10. In the Create a New JMS System Module screen, in the Subdeployments
drop-down list, select SOASubDeployment and make sure the SOAJMSServer
radio button is checked.

11. Click Finish.

The EDNOEPTopic JMS topic displays in the Summary of Resources table.

In the following figure, EDNOEPTopic, displays in the third row of the table
underneath EDNConnectionFactory. The EDNConnectionFactory is part of the
Oracle WebLogic Server installation. Connection factories are objects that enable
JMS clients to create concurrent JMS connections. The EDNConnectionFactory
object enables the JMS EDNOEPTopic to create an EDN connection to Oracle SOA
Suite.

5.3.5 Start the Oracle Event Processing Server
Start the Oracle Event Processing server so that you can create and deploy the Oracle
Event Processing Fraud Detection application.

Start the Oracle Event Processing Server
1. Go to /Oracle/Middleware/my_oep/user_projects/domains/fraudcheck/

domain/defaultserver.

2. Execute the appropriate startup script:

a. On Windows:

prompt> startwlevs.cmd

b. On UNIX:

prompt> ./startwlevs.sh

The terminal window displays messages as the server starts. When you see, <The
application context for "com.bea.wlevs.dataservices" was started
successfully >, the Oracle Event Processing server is ready.

Event Delivery Network Walkthrough

5-6 Getting Started with Oracle Event Processing

5.3.6 Use Oracle JDeveloper to Create An Oracle Event Processing Application
■ Start Oracle JDeveloper

■ Create a New Application

■ Add an Inbound Adapter Stage

■ Add an Input Channel Stagestage

■ Connect the Input Channel and Inbound Adapter Components

■ Set properties on the edn-inbound-adapter

■ Add an EPN Oracle CQL processor Stage

■ Add CQL code to the Processor

■ Connect the Input Channel and the Oracle CQL processor

■ Add an Outbound Channel Stage

■ Set properties on the Outbound Channel

■ Connect the Processor and the Outbound Channel

■ Add an Outbound Adapter Stage

■ Connect the Outbound Channel and the Outbound Adapter

Start Oracle JDeveloper
If Oracle JDeveloper is not already running, start it.

1. Go to /Oracle/Middleware/my_soa/jdeveloper/jdev/bin.

2. Type ./jdev -clean.

The Select Role dialog displays.

3. In the Select Role dialog, select Studio Developer (All Features) and click OK.

Wait a few moments while Oracle JDeveloper starts.

Create a New Application
1. Select File > New > Application.

The New Gallery dialog displays.

2. In the New Gallery dialog, select OEP Application and click OK.

The Create OEP Application screen displays.

3. In the Create OEP Application dialog, enter the following values:

Application Name: FraudOEPApplication
Directory: Accept the default
Application Package Prefix: Leave blank

4. Click Next.

The Create OEP Application - Step 2 screen displays.

5. In the Create OEP Application - Step 2 dialog, enter the following values:

Project Name: FraudCheck
Directory: Accept the default
Project Features: OEP Suite

6. Click Next.

Event Delivery Network Walkthrough

Create a Fraud Detection Application with EDN Adapters 5-7

The Create OEP Application - Step 3 dialog displays.

7. In the Create OEP Application - Step 3 dialog, click Next to accept the defaults.

The Create OEP Application - Step 4 dialog displays.

8. In the Create OEP Application - Step 4 dialog, Click Finish to accept the defaults:

The Empty OEP Project template provides the basic structure of an Oracle Event
Processing application, which are an empty configuration file and assembly files.

The OEP Server Connections can be left blank at this stage. In a later step, you
create the Oracle Event Processing server connection.

9. Click Finish.

The Oracle Event Processing FraudCheck project displays. I

10. If you cannot see the empty EPN Diagram tab and the components panel, go to the
Applications panel, expand FraudCheck > OEP Content and double-click EPN
Diagram.

Add an Inbound Adapter Stage
1. With the EPN diagram open, go to the right panel under Components, and open

the EDN Adapter window

The EDN inbound and outbound adapters display.

2. Drag the EDN Inbound Adapter component from the EDN Adapter window to
the empty middle panel (canvas).

The New EDN Adapter wizard starts.

3. In the New EDN Adapter wizard, provide the following values:

Adapter ID: edn-inbound-adapter.
File name: adapter.xml.

Changing the file name from processor.xml to a name that is specific to your
usage, distinguishes the files you create from the default files provided by Oracle
JDeveloper.

4. Click Next.

Event Delivery Network Walkthrough

5-8 Getting Started with Oracle Event Processing

5. In the EDN Inbound Adapter Configuration dialog, specify the following values
that relate to your Oracle WebLogic Server configuration.

JNDI Provider URL: t3://localhost:7101.
JNDI Factory: weblogic.jndi.WLInitialContextFactory.
User: weblogic.
Password: welcome1.

WebLogic T3 clients are Java RMI clients that use the Oracle T3 protocol to
communicate with Oracle WebLogic Server. T3 clients typically outperform other
client types.

6. Under Edl Properties, load the Edl File as follows:

a. Click the search icon (magnifying glass) next to the EDL File field.

b. Navigate to the location where you unzipped the OEP_Fraud_Detection_
Walkthrough_Files.zip file.

c. Select the FraudCheckEvent.edl file inside the folder and click OK.

7. Under Edl Properties, select FraudCheckRequest from the Event Type drop-down
list.

8. In the EDN Inbound Adapter Configuration dialog, under Advanced Properties,
select the schema file associated with the FraudCheckEvent.edl file as follows:

a. Click the search icon (magnifying glass) next to the Schema File field.

b. Navigate to the location where you unzipped the OEP_Fraud_Detection_
Walkthrough_Files.zip file.

c. Select the FraudCheckType.xsd file inside the folder and click OK.

9. Click Finish.

Two informational dialogs display about the files you are uploading.

10. Read the informational message and press OK to dismiss them.

The EDN diagram displays the edn-inbound-adapter that you just created, and the
Fraud Check project lists the files that you uploaded.

11. Select File > Save to save your work.

Add an Input Channel Stagestage
1. In the right panel under Components, open the Base EPN Components window.

The base EPN components display.

2. Drag the Channel component to a free space on the canvas.

The New Channel dialog displays.

3. In the New Channel dialog, provide the following information:

Channel ID: ednInputChannel.
Event Type: <NONE>

4. Click OK.

The EDN diagram displays the channel that you just created.

5. Select File > Save to save your work.

Connect the Input Channel and Inbound Adapter Components
1. Select and hold edn-inbound-adapter with the left mouse button.

Event Delivery Network Walkthrough

Create a Fraud Detection Application with EDN Adapters 5-9

2. Drag the edn-inbound-adapter to the ednInputChannel.

After a few moments, a line displays to connect the adapter to the channel. The
components adjust so that the adapter and channel are in a line going left to right
with the channel to the left of the adapter. This alignment depicts the flow of
information into and out of the EDN from left to right.

3. Select File > Save to save your work.

Set properties on the edn-inbound-adapter
1. Select the ednInputChannel event stage.

Oracle JDeveloper highlights the ednInputChannel.

2. In the Properties window in the bottom-right corner of Oracle JDeveloper, select
edl:FraudCheckRequest from the event-type drop-down list.

The FraudCheckRequest event type is now associated with the ednInputChannel.
This means that the Fraud Check application checks for FraudCheckRequest
events as events come through the ednInputChannel.

3. Select File > Save to save your work.

Add an EPN Oracle CQL processor Stage
1. Under Base EPN Components, drag the Processor component to a free space on

the canvas.

The New Processor dialog displays.

2. In the New Processor dialog, provide the following information:

Processor ID: ednProcessor.
File name: processor.xml.

3. Click OK.

The EDN diagram displays the ednprocessor that you just created.

4. Select File > Save to save your work.

Add CQL code to the Processor
1. Right-click the ednProcessor stage.

The context menu displays.

2. From the context menu, select Go To Configuration Source.

Oracle JDeveloper opens a source editor where you place the Oracle CQL rules to
be applied to the streaming event data. The source editor provides a sample query
that you can edit or replace.

3. Replace the sample Oracle CQL with the Oracle CQL provided in the
ProcessorCQLFraudSample.xml file that is inside your OEP_Fraud_Detection_
Walkthrough_Files folder.

Event Delivery Network Walkthrough

5-10 Getting Started with Oracle Event Processing

You replace the sample Oracle CQL including <rules>..</rules> with the
following Oracle CQL code:

<rules>
 <view id="FraudView"><![CDATA[
 select S.properties as properties,
 cast@java(S.javaContent,
 com.oracle.oep.FraudCheckRequest.class).getOrderNumber() as orderNumber,
 cast@java(S.javaContent,
 com.oracle.oep.FraudCheckRequest.class).getEmail() as email,
 cast@java(S.javaContent,
 com.oracle.oep.FraudCheckRequest.class).getTotalAmount() as totalAmount
 from ednInputChannel as S
]]></view>

<!--
With id=FraudViewAmountOk, the view and query statements detect the case where
the sum of all order amounts from a specific email over a 24 hour period is
less than $1000. In this case, he query issues a FraudCheckResponseEvent with
status OK.
-->

 <view id="FraudViewAmountOk"><![CDATA[
 select email
 from FraudView[range 24 hours]
 group by FraudView.email
 having sum(FraudView.totalAmount) <= 1000.0
]]></view>

 <query id="FraudQueryAmountOk"><![CDATA[
 select V1.properties as properties,
 FraudCheckResponse(V1.orderNumber, "OK")
 as javaContent
 from FraudView[partition by email rows 1] as V1, FraudViewAmountOk as V2
 where V1.email = V2.email
]]></query>

<!--
With id= FraudViewAmountAlert, the view and query statements detect the case
where the sum of all order amounts from a specific email over a 24 hour period
is greater than $1000. In this case, the query issues a FraudCheckResponseEvent
with status THRESHOLD_EXCEEDED.
-->

 <view id="FraudViewAmountAlert"><![CDATA[
 select email
 from FraudView[range 24 hours]
 group by FraudView.email
 having sum(FraudView.totalAmount) > 1000.0
]]></view>

 <query id="FraudQueryAmountAlert"><![CDATA[
 select V1.properties as properties,
 FraudCheckResponse(V1.orderNumber, "THRESHOLD_EXCEEDED")
 as javaContent
 from FraudView[partition by email rows 1] as V1, FraudViewAmountAlert
 as V2 where V1.email = V2.email
]]></query>
</rules>

Event Delivery Network Walkthrough

Create a Fraud Detection Application with EDN Adapters 5-11

4. Select File > Save to save your work.

5. Click the EPN Diagram tab to return to the EPN diagram.

Connect the Input Channel and the Oracle CQL processor
1. Select and hold ednInputChannel with the left mouse button.

Oracle JDeveloper highlights the ednInputChannel.

2. Drag ednInputChannel to the ednProcessor.

After a few moments, a line displays to connect the input channel to the Oracle
CQL processor. The components adjust so that the adapter, channel, and Oracle
CQL processor are in a line going left to right.

3. Select File > Save to save your work.

Add an Outbound Channel Stage
1. Under Base EPN Components, drag the Channel component to a free space on

the canvas.

The New Channel dialog displays.

2. In the New Channel dialog, provide the following information:

Channel ID: ednOutputChannel.
Event Type: <NONE>

3. Click OK.

The EDN diagram displays the channel that you just created.

4. Select File > Save to save your work.

Set properties on the Outbound Channel
1. Select ednOutputChannel.

Oracle JDeveloper highlights the ednOutputChannel.

2. In the Properties window in the bottom-right corner of Oracle JDeveloper, select
edl:FraudCheckResponse from the event-type drop-down list.

3. Select File > Save to save your work.

Connect the Processor and the Outbound Channel
1. Select and hold ednProcessor with the left mouse button.

Oracle JDeveloper highlights the ednProcessor.

2. Drag ednProcessor to ednOutputChannel.

After a few moments, a line displays to connect the Oracle CQL processor to the
output channel. The components adjust so that the adapter, channel, and Oracle
CQL processor are in a line going left to right.

Event Delivery Network Walkthrough

5-12 Getting Started with Oracle Event Processing

3. Select File > Save to save your work.

Add an Outbound Adapter Stage
1. Under EDN Adapters, drag the EPN Outbound Adapter component from the

EDN Adapter window to the canvas.

The New EDN Adapter wizard starts.

2. In the New EDN Adapter wizard, provide the following values:

Adapter ID: edn-outbound-adapter.
File name: adapter.xml.

3. Click Next.

The EDN Outbound Adapter Configuration dialog displays.

4. In the EDN Outbound Adapter Configuration dialog, specify the following
values that relate to your Oracle WebLogic Server configuration.

JNDI Provider URL: t3://localhost:7101.
JNDI Factory: weblogic.jndi.WLInitialContextFactory.
User: weblogic.
Password: welcome1.

5. In the EDN Outbound Adapter Configuration dialog, under Edl Properties, load
the Edl File as follows:

a. Click the search icon (magnifying glass) next to the EDL File field.

b. Navigate to the location where you unzipped the OEP_Fraud_Detection_
Walkthrough_Files.zip file.

Because you already loaded this file, you can also locate it under
$HOME/jdeveloper/mywork/Application1/FraudCheck/META-INF/wlevs/edn.

c. Select the FraudCheckEvent.edl file inside the folder and click OK.

When you load the FraudCheckEvent.edl file, the Event Type drop-down list
is populated with events to use in the Fraud Check application.

6. In the EDN Outbound Adapter Configuration dialog, in the Event Type
drop-down list, select FraudCheckResponse.

7. Click Finish.

The EDN diagram displays the edn-inbound-adapter that you just created, and the
Fraud Check project lists the files that you uploaded.

8. Select File > Save to save your work.

Connect the Outbound Channel and the Outbound Adapter
1. Select and hold ednOutputChannel with the left mouse button.

Oracle JDeveloper highlights the ednOutputChannel.

2. Drag ednOutputChannel to edn-Outbound-adapter.

Event Delivery Network Walkthrough

Create a Fraud Detection Application with EDN Adapters 5-13

After a few moments, a line displays to connect the output channel to the output
adapter. The components adjust so that the adapter, channel, and Oracle CQL
processor are in a line going left to right.

3. Select File > Save to save your work.

5.3.7 Deploy the Application with JDeveloper
Application deployment involves creating a server connection and a deployment
profile.

■ Create an Oracle Event Processing Server Connection

■ Deploy the Application

Create an Oracle Event Processing Server Connection
1. In Oracle JDeveloper, select File > New > From Gallery.

The New Gallery dialog displays.

2. In the New Gallery dialog under Categories, select Connections.

3. In the New Gallery dialog under Items, select OEP Connection, and click OK.

The Create OEP Server Connection dialog displays.

4. In the Create OEP Server Connection dialog, provide the following information:

Connection will be created in: IDE Connections: Checked
OEP Server Connection Name: FraudDetectionConnection.
OEP Server Home Path: /Oracle/Middleware/my_oep/
Use Default Values: Unchecked.
 OEP Server Projects Directory: user_projects/domains/
 fraudcheck_domain/defaultserver.
Use Default Values: Checked.
 Host: 127.0.0.1.
 Port: 9002.
Use Default Values: Unchecked.
 Username: oepadmin.
 User Password: welcome1.
Additional Parameters for OEP Server: blank.

5. In the Create OEP Server Connection dialog, click Test Connection.

If you see Success in the area below the Test Connection button, you entered the
information correctly. If you see errors, correct them and test again until you see
Success.

6. In the Create OEP Server Connection dialog, when you see the Success message,
click OK.

FraudDetectionConnection displays under Application Resources > Connections >
OEP Server Connection in the left panel.

Event Delivery Network Walkthrough

5-14 Getting Started with Oracle Event Processing

Create a Deployment Profile
A deployment profile creates an OSGi bundle that contains the required library JAR
file.

1. Right-click the FraudCheck project and select Deploy > New Deployment Profile.

The Create Deployment Profile dialog displays.

2. In the Create Deployment Profile dialog, provide the following values.

Profile Type: OEP Project Deployment Profile.

Deployment Profile Name: oep-profile-Production

3. Click OK.

The Deployment Properties dialog displays.

4. In the Deployment Properties dialog, edit the information so that it is correct:

Connection to Local OEP Server: FraudDetectionConnection (127.0.0.1:9002)
Symbolic Name: FraudOEPApplication.FraudCheck
Bundle Name: FraudOepApplication.FraudCheck
Bundle Version: 1.0.0
OSGi JAR file: Application1/FraudCheck/deploy/oep_profile-production.jar

5. Click OK.

Deploy the Application
1. Right-click the FraudCheck project.

The context menu displays.

2. In the context menu, select Deploy > oep_profile-Production.

The Deploy oep_profile-Production dialog displays.

3. In the Deploy oep_profile-Production dialog, select Deploy OSGi bundle to
target platform.

4. Click Next.

The Deploy oep_profile-Production Summary dialog displays.

5. In the next Deploy oep_profile-Production Summary dialog, confirm the
information.

6. Click Finish.

In the Deployment - Log window at the bottom of the middle panel, messages
indicate the successful deployment. Your Oracle Event Processing Application is
running and waiting for EDN events to arrive for processing.

In the left panel under Application Resources, you can see the
FraudOEPApplication.FraudCheck [Running] connection displays under
Connections > OEP Server Connection > OEPConnection > Applications.

The terminal window where you started the Oracle Event Processing window.
INFO: Subscribe Event from Topic=jms/fabric/EDNOEPTopic, JmsType=WLJMS,
isXA=false.

Note: Make sure you select the correct Profile Type, OEP Project
Deployment Profile.

Event Delivery Network Walkthrough

Create a Fraud Detection Application with EDN Adapters 5-15

5.3.8 Create and Deploy the Sample SOA Composite
A sample SOA composite provides FraudCheckRequest events so that the application
can check for potential fraudulent activities. How to create the sample composite is not
fully described, but it does provide a good code sample for you to leverage in existing
or new SOA composites.

The EDNOEPv2Proj SOA composite is provided in the OEP_Fraud_Detection_
Walkthrough_Files.zip file. The SOA composite sends EDN events to the Oracle Event
Processing application and the resulting EDN events are sent back to the SOA
composite. The SOA composite then uses the JCA File adapter to write the information
to a file that is saved for you to review and analyze later.

Access the Provided SOA Composite
1. In Oracle JDeveloper, select File > Open.

The Open dialog displays.

2. In the Open dialog, navigate to where you unzipped the OEP_Fraud_Detection_
Walkthrough_Files.zip file.

3. Open the EDNOEPv2 folder and select EDNOEPv2.jws project.

4. Click Open.

Oracle JDeveloper adds the SOA composite to the FraudCheck project.

View and Deploy the SOA Mediators
1. Navigate to Projects > EDNOEPv2Proj > SOA > Mediators and view the

mediators.

2. Right-click the EDNEOPv2Proj project.

The context menu displays.

3. In the context menu, select Deploy > New Deployment Profile.

The Create Deployment Profile dialog displays.

4. In the Create Deployment Profile dialog under Profile Type, select SOA-SAR File.

5. In the Ceate Deployment Profile dialog in the Deployment Profile Name field,
enter sar_OEP_TEST_COMPOSITE.

6. Click OK.

The SAR Deployment Properties dialog displays.

7. In the SAR Deployment Profile Properties dialog, click OK.

8. Right-click the EDNEOPv2Proj project.

The context menu displays.

9. In the context menu, select Deploy > sar_OEP_TEST_COMPOSITE

The Deployment Action dialog displays.

10. In the Deployment Action dialog, select Deploy to Application Server.

11. Click Next.

The Deploy Configuration dialog displays.

12. In the Deploy Configuration dialog, check the Overwrite any existing
composites with the same revision ID check box.

Event Delivery Network Walkthrough

5-16 Getting Started with Oracle Event Processing

Keep the default values.

13. Click Next.

The Select Server dialog displays.

14. In the Select Server dialog, select IntegratedWebLogicServer and click Next.

The SOA Servers dialog displays.

15. In the SOA Servers dialog, click Next to keep the default values.

The Summary dialog displays.

16. In the Summary dialog, review the settings for accuracy, and click Finish.

When the modified SOA composite successfully deploys, it creates a default JMS
mapping for the FraudCheckRequest and FraudCheckResponse event types. It is
likely that this JMS mapping uses AQ, instead of WLS JMS. To interoperate with
this Oracle Event Processing application, the JMS mapping for these specific event
types needs to be changed to use WLS JMS. The mapping change is done with
Oracle Enterprise Manager, which is part of Oracle SOA Suite.

Use Oracle Enterprise Manager to Verify the JMS Mapping
1. Open a browser, and enter localhost:7101/em into the URL box.

2. Log in with the user name weblogic and the password welcome1.

3. In the left panel, expand SOA > soa-infra (Default Server) > default >
EDNOEPv2Proj.

4. Right-click soa-infra (Default Server) and select Business Events from the context
menu.

The Business Events screen displays in the right panel.

5. On the Business Events screen, select the Events tab.

The Namespaces and Events table displays FraudCheckRequest and
FraudCheckResponse with a Default link in the JMS Mapping column.

6. In the Events tab, select the Default link.

The JMS Mapping dialog displays.

7. In the JMS Mapping dialog, verify the following information and make changes
as needed.

Oracle Enterprise Messaging System(OEMS): Oracle Weblogic JMS
JNDI Connection Factory (XA, Durable): eis/wls/EDNxaDurableTopic
JNDI Connection Factory (XA, Non-Durable): eis/wls/EDNxaTopic
JNDI Connection Factory (Non-XA, Durable): eis/wls/EDNLocalTxDurableTopic
JNDI Connection Factory (Non-XA, Non-Durable): eis/wls/EDNLocalTxTopic
JMS Topic Name: jms/fabric/EDNOEPTopic

8. Press Apply.

The JMS Mapping value changes to Modified.

9. Repeat for the second Default link.

Update the Sample SOA Composite for Results Analysis
1. In Oracle JDeveloper, under EDNOEPv2Proj > SOA, double-click

EDNOEPv2Proj to display the diagram.

2. On the diagram, double-click the EDNToFileOutput component.

Event Delivery Network Walkthrough

Create a Fraud Detection Application with EDN Adapters 5-17

The File Adapter Configuration Wizard displays.

3. In the File Adapter Configuration Wizard, step through the dialogs accepting the
provided values until you get to the File Configuration dialog.

The File Configuration dialog displays.

4. In the File Configuration dialog, change the Directory for Outgoing Files
(physical path) to a location that is valid in your environment.

5. Write the new location down because you will use it later to review and analyze
the response information.

6. Click Next and complete the remaining steps by accepting the default values.

7. Click Finish.

Redeploy the SOA Composite
1. Right-click the EDNEOPv2Proj project.

The context menu displays.

2. From the context menu, select Deploy > sar_OEP_TEST_COMPOSITE

The Deployment Action dialog displays.

3. In the Deployment Action dialog, select Deploy to Application Server.

4. Click Next.

The Deploy Configuration dialog displays.

5. In the Deploy Configuration dialog, check the Overwrite any existing
composites with the same revision ID check box and keep the default values.

6. Click Next.

The Select Server dialog displays.

7. In the Select Server dialog, select IntegratedWebLogicServer and click Next.

The SOA Servers dialog displays.

8. In the SOA Servers dialog, click Next to keep the default values.

The Summary dialog displays.

9. In the Summary dialog, review the settings for accuracy, and click Finish.

When the modified SOA composite successfully deploys, it creates a default JMS
mapping for the FraudCheckRequest and FraudCheckResponse event types. It is
likely that this JMS mapping uses AQ, instead of WLS JMS. To interoperate with
this Oracle Event Processing application, the JMS mapping for these specific event
types needs to be changed to use WLS JMS. The event types change is done with
Oracle Enterprise Manager, which is part of Oracle SOA Suite

5.3.9 Test the Fraud Detection Application
Use Oracle Enterprise Manager to test the SOA Composite and its interaction and
integration with the new Oracle Event Processing Application.

Log in to Enterprise Manager and navigate to the Test Web Service Screen
1. Open a browser, and enter localhost:7101/em into the URL box.

The Enterprise Manager login screen displays.

Event Delivery Network Walkthrough

5-18 Getting Started with Oracle Event Processing

2. Log in to Enterprise Manager with the user name weblogic and the password
welcome1.

The SOA Infrastructure screen displays.

3. In the SOA Infrastructure screen left panel under Target Navigation, expand SOA
> soa-infra (Default Server) > default and select EDNOEPv2Proj.

4. In the SOA Infrastructure right panel, press the Test button.

Test the SOA Composite and the Oracle Event Processing Application
1. On the Test Web Service screen, scroll down in the right panel until you see the

Input Arguments section.

2. In the Input Arguments section under SOAP Body, notice that there are two
fields, email and amount.

The email and amount fields let you enter an email address and an amount to be
passed to the Oracle Event Processing application. The email address is used by
the Oracle CQL Group By clause to identify each collection of related orders and
the dollar amount value.

3. In the email field, enter an email address, and in the amount field, enter 200.00.

4. Scroll to the top of the page and click Test Web Service.

Check the terminal window where you started Oracle WebLogic server. You see a
message like the following that lets you know that a FraudCheckEvent has been
published to the file:

INFO: Publishing Event
"{http://xmlns.oracle.com/Application2/Project1/FraudCheckEvent}FraudCheckRespo
nse" to Topic="jms/fabric/EDNOEPTopic", JmsType=WLJMS, isXA=false

5. With the same email address, enter more amounts and click Test Web Service
until you have submitted more than $1000 worth of events.

6. With a text editor, navigate to the directory for the oepToedn-output_
PRODUCTION.txt file and open it.

Event Delivery Network Walkthrough

Create a Fraud Detection Application with EDN Adapters 5-19

For the created order number, the record status is THRESHOLD EXCEEDED. This status
was determined by the Oracle CQL statements in the Oracle Event Processing
Application.

Event Delivery Network Walkthrough

5-20 Getting Started with Oracle Event Processing

6

Create an Order Tracking Application with QuickFix Adapter 6-1

6Create an Order Tracking Application with
QuickFix Adapter

The QuickFix Adapter is a messaging engine for handling the real-time electronic
exchange of securities transactions according to the Financial Information eXchange
(FIX) standard. The QuickFix adapter listens for FIX messages, converts the FIX
messages to Oracle Event Processing events, and sends the events to the next stage for
processing. See also Oracle Fusion Middleware Developing Application for Oracle Event
Processing

This chapter includes the following sections:

■ Section 6.1, "Order Tracking Example Application"

■ Section 6.2, "Test the Example Application"

6.1 Order Tracking Example Application
Figure 6–1 shows the EPN for a simple order tracking application called
quickfix.ordertracker. FIX data enters the EPN on the left and is converted to an
event. The event is channeled to an Oracle CQL processor, and after processing, is
channeled to an event sink.

Figure 6–1 quickfix.ordertracker application EPN

The example is comprised of the following configuration and Java class files:

■ Assembly File

■ Configuration File

■ QuickFIXEvent.java

■ EventListerner.java

Assembly File
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="

Order Tracking Example Application

6-2 Getting Started with Oracle Event Processing

 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v12_1_3_0.xsd
 <wlevs:event-type-repository>
 <wlevs:event-type type-name="QuickFIXEvent">
 <wlevs:class>event.QuickFIXEvent</wlevs:class>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <wlevs:adapter id="QuickFIXInbound" provider="quickfix-inbound"/>
 <wlevs:processor id="QuickFIXProcessor"/>

 <wlevs:channel id="QuickFIXInChannel" event-type="QuickFIXEvent">
 <wlevs:listener ref="QuickFIXProcessor" />
 <wlevs:source ref="QuickFIXInbound"/>
 </wlevs:channel>

 <wlevs:event-bean id="eventListener" class="listeners.EventListener">
 <wlevs:instance-property name="nodeName" value="QuickFIXInbound" />
 </wlevs:event-bean>

 <wlevs:channel id="QuickFIXOutChannel" event-type="QuickFIXEvent">
 <wlevs:listener ref="eventListener" />
 <wlevs:source ref="QuickFIXProcessor"/>
 </wlevs:channel>
</beans>

Configuration File
The following entries show the QuickFix adapter configuration. The configuration
requires at least one <default-session> property value and can have zero or more
<session> tags.

The BeginString property indicates the FIX message version. This data is not
validated by the QuickFIX engine.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application" >
<quickfix-adapter>
 <name>QuickFIXInbound</name>
 <event-type>QuickFIXEvent</event-type>
 <default-session description="default configuration">
 <configuration>
 <config-name>FileStorePath</config-name>
 <config-value>/scratch/tprabish/garage/quickfix/acceptor/filestore
 </config-value>
 </configuration>
 <configuration>
 <config-name>FileLogPath</config-name>
 <config-value>/scratch/tprabish/garage/quickfix/acceptor/filelog
 </config-value>
 </configuration>
 <configuration>

Note: Oracle Event Processing does not support QuickFIX dynamic
acceptor sessions in the 12c release.

Order Tracking Example Application

Create an Order Tracking Application with QuickFix Adapter 6-3

 <config-name>UseDataDictionary</config-name>
 <config-value>N</config-value>
 </configuration>
 <configuration description="identifier-message format">
 <config-name>BeginString</config-name>
 <config-value>FIX.4.2</config-value>
 </configuration>
 <configuration>
 <config-name>ConnectionType</config-name>
 <config-value>acceptor</config-value>
 </configuration>
 <configuration>
 <config-name>StartTime</config-name>
 <config-value>00:00:00</config-value>
 </configuration>
 <configuration>
 <config-name>EndTime</config-name>
 <config-value>00:00:00</config-value>
 </configuration>
 <configuration>
 <config-name>HeartBtInt</config-name>
 <config-value>30</config-value>
 </configuration>
 <configuration>
 <config-name>SocketAcceptPort</config-name>
 <config-value>9876</config-value>
 </configuration>
 <configuration>
 <config-name>RefreshMessageStoreAtLogon</config-name>
 <config-value>Y</config-value>
 </configuration>
 </default-session>

 <session description="ordertracker configuration">
 <configuration description="identifier-acceptor">
 <config-name>SenderCompID</config-name>
 <config-value>SAMPLEACCEPTOR</config-value>
 </configuration>
 <configuration description="identifier-initiator">
 <config-name>TargetCompID</config-name>
 <config-value>SAMPLESENDER</config-value>
 </configuration>
 </session>
</quickfix-adapter>
<processor>
 <name>QuickFIXProcessor</name>
 <rules>
 <query id="ExampleQuery"> <![CDATA[select * from QuickFIXInChannel
 [now]]]> </query>
 </rules>
 </processor>
</wlevs:config>

QuickFIXEvent.java
package event;

public class QuickFIXEvent {
 private String text;
 private String origClOrdID;
 private String clOrdID;

Test the Example Application

6-4 Getting Started with Oracle Event Processing

 private String symbol;
 private String side;

 public String getText() { return text; }
 public void setText(String text) { this.text = text; }
 public String getOrigClOrdID() { return origClOrdID; }
 public void setOrigClOrdID(String origClOrdID) {this.origClOrdID = origClOrdID;}
 public String getClOrdID() { return clOrdID; }
 public void setClOrdID(String clOrdID) { this.clOrdID = clOrdID; }
 public String getSymbol() { return symbol; }
 public void setSymbol(String symbol) { this.symbol = symbol; }
 public String getSide() { return side; }
 public void setSide(String side) { this.side = side; }

 @Override
 public String toString() {
 StringBuilder sb=new StringBuilder();
 sb.append("\t\t\t[origClOrdID=").append(origClOrdID).append("]\n")
 .append("\t\t\t[clOrdID=").append(clOrdID).append("]\n")
 .append("\t\t\t[symbol=").append(symbol).append("]\n")
 .append("\t\t\t[side=").append(side).append("]\n")
 .append("\t\t\t[text=").append(text).append("]\n");
 return sb.toString();
 }
}

EventListerner.java
The EventListener.java class is used in the example code follows.

package listeners;

import com.bea.wlevs.ede.api.EventRejectedException;
import com.bea.wlevs.ede.api.StreamSink;

//The following EventListener class is an event sink. It is provided to
//demonstrate that the messages have been received and processed in the EPN.
public class EventListener implements StreamSink {
 private String nodeName_ = "N/A";
 public void setNodeName(String nodeName) {
 nodeName_ = nodeName;
 }

 public void onInsertEvent(Object event) throws EventRejectedException {
 System.out.println("Received the following event in the listener");
 System.out.println("[node:" + nodeName_ + "] onInsertEvent():\n" + event);
 }
}

6.2 Test the Example Application
After you deploy the example QuickFix adapter application, it starts the QuickFIX
engine to listen at the port specified in the configuration file. To test the application,
code a QuickFIX initiator application to send messages to this adapter with the
following files.

■ QuickFixSampleInitiatorApp.java

■ SampleInitiator.java

■ initiator_sample.cfg

Test the Example Application

Create an Order Tracking Application with QuickFix Adapter 6-5

■ runInitiator.bat

QuickFixSampleInitiatorApp.java
package proto.quickfix;

import java.io.FileInputStream;
import quickfix.Acceptor;
import quickfix.Application;
import quickfix.DefaultMessageFactory;
import quickfix.FileLogFactory;
import quickfix.FileStoreFactory;
import quickfix.Initiator;
import quickfix.LogFactory;
import quickfix.MessageFactory;
import quickfix.MessageStoreFactory;
import quickfix.ScreenLogFactory;
import quickfix.Session;
import quickfix.SessionNotFound;
import quickfix.SessionSettings;
import quickfix.SocketAcceptor;
import quickfix.SocketInitiator;
import quickfix.field.ClOrdID;
import quickfix.field.OrigClOrdID;
import quickfix.field.Side;
import quickfix.field.Symbol;
import quickfix.field.Text;

public class QuickFixSampleInitiatorApp {

 private static SampleInitiator initiatorApp;

 public static void main(String args[]) throws Exception {
 Initiator initiator = startInitiator();
 while(!initiator.isLoggedOn()){
 System.out.println("Waiting for initiator logon");
 synchronized (initiator) {
 initiator.wait(1000);
 }
 };
 System.out.println("initiator loggedon");
 initiatorApp.sendMessage();
 initiator.stop();
 }

 public static Initiator startInitiator() throws Exception {
 String fileName =
 "D:/installs/helios/eclipse/workspace/quickfix.ordertracker/src/proto/
 initiator_sample.cfg";

 //initiatorApp is your class that implements the Application interface.
 initiatorApp = new SampleInitiator();
 SessionSettings settings = new SessionSettings(new FileInputStream(fileName));
 MessageStoreFactory messageStoreFactory = new FileStoreFactory(settings);
 LogFactory logFactory = new ScreenLogFactory(true, true, true);
 MessageFactory messageFactory = new DefaultMessageFactory();

Note: You need to replace some values shown in the following
examples based on your environment.

Test the Example Application

6-6 Getting Started with Oracle Event Processing

 Initiator initiator = new SocketInitiator(initiatorApp,
 messageStoreFactory, settings, logFactory, messageFactory);
 initiator.start();
 return initiator;
 }
}

SampleInitiator.java
package proto.quickfix;

import quickfix.Application;
import quickfix.DoNotSend;
import quickfix.FieldNotFound;
import quickfix.IncorrectDataFormat;
import quickfix.IncorrectTagValue;
import quickfix.Message;
import quickfix.RejectLogon;
import quickfix.Session;
import quickfix.SessionID;
import quickfix.SessionNotFound;
import quickfix.UnsupportedMessageType;
import quickfix.field.ClOrdID;
import quickfix.field.OrigClOrdID;
import quickfix.field.Side;
import quickfix.field.Symbol;
import quickfix.field.Text;

public class SampleInitiator implements Application{
 private SessionID sessionIDTmp;
 public volatile boolean isLoggedOn;

 @Override
 public void fromAdmin(Message arg0, SessionID arg1) throws FieldNotFound,
 IncorrectDataFormat, IncorrectTagValue, RejectLogon { }

 @Override
 public void fromApp(Message arg0, SessionID arg1) throws FieldNotFound,
 IncorrectDataFormat, IncorrectTagValue, UnsupportedMessageType {
 System.out.println("Initiator received message");
 }

 public void sendMessage() throws SessionNotFound {
 quickfix.fix42.OrderCancelRequest message =
 new quickfix.fix41.OrderCancelRequest(new OrigClOrdID("123"),
 new ClOrdID("321"),
 new Symbol("LNUX"),
 new Side(Side.BUY));
 message.set(new Text("Cancel My Order!"));
 System.out.println("SESSION ID IS-"+sessionIDTmp);
 Session.sendToTarget(message, sessionIDTmp);
 }

 @Override
 public void onCreate(SessionID arg0) {
 System.out.println("Initiator session created"+arg0);
 this.sessionIDTmp=arg0;
 }

 @Override
 public void onLogon(SessionID arg0) {

Test the Example Application

Create an Order Tracking Application with QuickFix Adapter 6-7

 System.out.println("Initiator logon done"+arg0);
 isLoggedOn=true;
 }

//Optionally, you can implement the onLogout and toAdmin callback methods below.
//To implement them, see the QuickFix documentation: http://www.quickfixj.org.
 @Override
 public void onLogout(SessionID arg0){
 //Notifies you when an FIX session is offline.
 //The cause can be a logout, forced termination, or loss of network connection.
 }

 @Override
 public void toAdmin(Message arg0, SessionID arg1) {
 //Provides a look at the administrative messages sent from your FIX machine
 //to another party. This method enables you to log messages. You can add
 // fields to an adminstrative message before it is sent.
 }

 @Override
 public void toApp(Message arg0, SessionID arg1) throws DoNotSend {
 System.out.println("Initiator toApp");
 }
}

initiator_sample.cfg
[default]
FileStorePath=/scratch/myusername/garage/quickfix/initiator/filestore
BeginString=FIX.4.2
UseDataDictionary=N
ConnectionType=initiator

[session]
SenderCompID=SAMPLESENDER
TargetCompID=SAMPLEACCEPTOR
SocketConnectHost=10.240.30.74
SocketConnectPort=9876
StartTime=00:00:00
EndTime=00:00:00
HeartBtInt=30
ReconnectInterval=5

runInitiator.bat
set QFJ_HOME=D:\installs\helios\eclipse\workspace\quickfix.ordertracker
set CP=%QFJ_HOME%/lib/mina-core-1.1.7.jar;%QFJ_HOME%/lib/slf4j-api-1.6.3.jar;%QFJ_
HOME%/lib/slf4j-jdk14-1.6.3.jar;%QFJ_HOME%/lib/slf4j-log4j12-1.6.3.jar;%QFJ_
HOME%/lib/quickfixj-all-1.5.2.jar;%QFJ_HOME%/lib/quickfixj-core-1.5.2.jar;%QFJ_
HOME%/lib/quickfixj-msg-fix40-1.5.2.jar;%QFJ_
HOME%/lib/quickfixj-msg-fix41-1.5.2.jar;%QFJ_
HOME%/lib/quickfixj-msg-fix42-1.5.2.jar;%QFJ_
HOME%/lib/quickfixj-msg-fix43-1.5.2.jar;%QFJ_
HOME%/lib/quickfixj-msg-fix44-1.5.2.jar;%QFJ_
HOME%/lib/quickfixj-msg-fix50-1.5.2.jar;%QFJ_
HOME%/lib/quickfixj-msg-fixt11-1.5.2.jar;%QFJ_HOME%/dist/quickfix.ordertracker.jar

java -cp %CP% proto.quickfix.QuickFixSampleInitiatorApp

Test the Example Application

6-8 Getting Started with Oracle Event Processing

7

Oracle Event Processing Samples 7-1

7Oracle Event Processing Samples

This chapter introduces the sample code provided with the Oracle Event Processing
installation and describes how to set up and use the code. You must have installed
Oracle Event Processing with the Examples check box checked.

This chapter covers the following topics:

■ Section 7.1, "About the Samples"

■ Section 7.2, "Environment Setup"

■ Section 7.3, "Use Oracle Event Processing Visualizer with the Samples"

■ Section 7.4, "Increase the Performance of the Samples"

■ Section 7.5, "HelloWorld Example"

■ Section 7.6, "Oracle Continuous Query Language Example"

■ Section 7.7, "Oracle Spatial Example"

■ Section 7.8, "Foreign Exchange (FX) Example"

■ Section 7.9, "Signal Generation Example"

■ Section 7.10, "Event Record and Playback Example"

7.1 About the Samples
When you choose to include examples during installation, the Oracle Event Processing
installation includes the following samples:

■ HelloWorld: Provides a basic skeleton for an Oracle Event Processing application.

■ Oracle CQL: Shows how to use the Oracle Event Processing Visualizer Query
Wizard to construct Oracle CQL queries to process event streams.

■ Oracle Spatial: Shows how to use Oracle Spatial with Oracle CQL queries to
process a stream of Global Positioning System (GPS) events. The GPS events track
the location of buses and generate alerts when a bus arrives at bus stop positions.

■ Foreign Exchange (FX): Includes multiple components.

■ Signal Generation: Simulates market trading and trend detection.

■ Event record and playback: Shows how to configure event record and playback
using a persistent event store.

These samples are provided in the following two forms:

■ Section 7.1.1, "Ready-to-Run Samples"

About the Samples

7-2 Getting Started with Oracle Event Processing

■ Section 7.1.2, "Sample Source"

The samples use Ant as their development tool. For details about Ant and installing it
on your computer, see http://ant.apache.org/.

The Oracle Event Processing installation directory is referred to as
/Oracle/Middleware/my_oep/.

7.1.1 Ready-to-Run Samples
The ready-to-run samples have domains that are preconfigured to deploy the
assembled application. Each domain is a standalone server domain, and the server
files are located in the defaultserver subdirectory of the domain directory. To deploy
the application, start the default server in the domain.

■ The sample HelloWorld domain is located in /Oracle/Middleware/my_oep/oep/
examples/domains/helloworld_domain.

See Section 7.5.1, "Run the HelloWorld Example from the helloworld Domain" for
details.

■ The sample CQL domain is located in /Oracle/Middleware/my_oep/oep/
examples/domains/cql_domain.

See Section 7.6.1, "Run the CQL Example" for details.

■ The sample Oracle Spatial domain is located in /Oracle/Middleware/my_oep/oep/
examples/domains/spatial_domain.

See Section 7.7.1, "Run the Oracle Spatial Example" for details.

■ The sample Foreign Exchange domain is located in /Oracle/Middleware/my_oep/
oep/examples/domains/fx_domain.

See Section 7.8.1, "Run the Foreign Exchange Example" for details.

■ The sample Signal Generation domain is located in /Oracle/Middleware/my_oep/
oep/examples/domains/signalgeneration_domain.

See Section 7.9.1, "Run the Signal Generation Example" for details.

■ The sample Record and Playback domain is in /Oracle/Middleware/my_oep/
oep/examples/domains/recplay_domain.

See Section 7.10.1, "Run the Event Record/Playback Example" for details.

7.1.2 Sample Source
The Java and configuration XML source for each sample is provided in a separate
source directory that describes a sample development environment.

■ The HelloWorld source directory is located in /Oracle/Middleware/my_oep/oep/
examples/source/applications/helloworld.

See Section 7.5.4, "Implementation of the HelloWorld Example" for details.

■ The CQL source directory is located in /Oracle/Middleware/my_oep/oep/
examples/source/applications/cql.

See Section 7.6.4, "Implementation of the CQL Example" for details.

■ The Oracle Spatial source directory is in /Oracle/Middleware/my_
oep/oep/examples/source/applications/spatial.

See Section 7.7.4, "Implementation of the Oracle Spatial Example" for details.

Use Oracle Event Processing Visualizer with the Samples

Oracle Event Processing Samples 7-3

■ The Foreign Exchange source directory is located in /Oracle/Middleware/my_oep/
oep/examples/source/applications/fx.

See Section 7.8.4, "Implementation of the FX Example" for details.

■ The Signal Generation source directory is located in /Oracle/Middleware/my_oep/
oep/ examples/source/applications/signalgeneration.

See Section 7.9.4, "Implementation of the Signal Generation Example" for details.

■ The Record and Playback source directory is located in /Oracle/Middleware/my_oep/
oep/examples/source/applications/recplay.

See Section 7.10.4, "Implementation of the Record and Playback Example" for
details.

7.2 Environment Setup
To run the examples, your development environment must have JDK7_u55 or above
installed. You must set JAVA_HOME as follows.

export JAVA_HOME=< path to installation directory >
export PATH=${JAVA_HOME}/bin:${PATH}

To build and run the sample source, your development environment must have Ant
installed. You must set ANT_HOME as follows:

export ANT_HOME=<path to Ant directory>
export PATH=${ANT_HOME}/bin:${PATH}

7.3 Use Oracle Event Processing Visualizer with the Samples
The Oracle Event Processing Visualizer is a Web 2.0 application that consumes data
from Oracle Event Processing, displays it in a useful and intuitive way to system
administrators and operators, and for specified tasks, accepts data that is passed back
to Oracle Event Processing so as to change its configuration.

Visualizer is itself an Oracle Event Processing application and is automatically
deployed in each server instance. To use it with the samples, be sure you have started
the server (instructions provided for each sample below) and then invoke the
following URL in your browser:

 http://host:9002/wlevs

where host refers to the name of the computer hosting Oracle Event Processing. If it is
the same as the computer on which the browser is running you can use localhost.

Security is disabled for the HelloWorld application, so you can click Logon at the login
screen without entering a user name and password. For the FX and signal generation
samples, security is enabled, so use the following user name and password to log in:

 Username: oepadmin
 Password: welcome1

For more information about Oracle Event Processing Visualizer, see Oracle Fusion
Middleware Developing Application for Oracle Event Processing .

Increase the Performance of the Samples

7-4 Getting Started with Oracle Event Processing

7.4 Increase the Performance of the Samples
When you run Oracle Event Processing on a computer with a larger amount of
memory, set the load generator and server heap sizes appropriately for the size of the
computer.

On computers with sufficient memory, Oracle recommends a heap size of 1 GB for the
server and between 512MB - 1GB for the load generator.

7.5 HelloWorld Example
The HelloWorld sample shows how to create a typical Oracle Event Processing
application.

Figure 7–1 shows the HelloWorld example Event Processing Network (EPN). The EPN
contains the components that make up the application and defines how they fit
together.

Figure 7–1 The HelloWorld Example Event Processing Network

The example includes the following components:

■ helloworldAdapter: Component that generates Hello World messages every
second. In a real-world scenario, this component typically reads a stream of data
from a source, such as a data feed from a financial institution, and converts it into
a stream of events that the Oracle CQL processor can understand. The HelloWorld
application also includes a HelloWorldAdapterFactory that creates instances of
HelloWorldAdapter.

■ helloworldInputChannel: Component that streams the events generated by the
adapter (in this case Hello World messages) to the Oracle CQL processor.

■ helloworldProcessor: Component that forwards the messages from the
helloworldAdapter component to the Plain Old Java Object (POJO) that contains
the business logic. In a real-world scenario, this component typically executes
additional and possibly much more processing of the events from the stream, such
as selecting a subset of events based on a property value, grouping events, and so
on using Oracle CQL.

■ helloworldOutputChannel: Component that streams the events processed by the
Oracle CQL processor to the POJO that contains the user-defined business logic.

■ helloworldBean: POJO component that prints out a message every time it receives
a batch of messages from the Oracle CQL processor through the output channel. In
a real-world scenario, this component contains the business logic of the
application, such as running reports on the set of events from the Oracle CQL
processor, sending appropriate emails or alerts, and so on.

7.5.1 Run the HelloWorld Example from the helloworld Domain
The HelloWorld application is pre-deployed to the helloworld domain. To run the
application, start an instance of Oracle Event Processing server.

HelloWorld Example

Oracle Event Processing Samples 7-5

Run the HelloWorld example from the helloworld domain:
1. Open a command window and change to the default server directory of the

helloworld domain directory, located in install with install with
/Oracle/Middleware/my_oep/oep/examples/domains/helloworld_
domain/defaultserver.

2. Start Oracle Event Processing by executing the appropriate server startup script
with the correct command-line arguments:

a. On Windows:

prompt> startwlevs.cmd

b. On UNIX:

prompt> ./startwlevs.sh

After the server starts, you should see the following message printed to the output
about every second:

Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example is running correctly.

7.5.2 Build and Deploy the HelloWorld Example from the Source Directory
The HelloWorld sample source directory contains the Java source and other required
resources such as configuration XML files, that make up the HelloWorld application.
The build.xml Ant file contains targets to build and deploy the application to the
helloworld domain.

See also Section 7.5.3, "Description of the Ant Targets to Build Hello World".

Build and deploy the HelloWorld example from the source directory:
1. If the helloworld Oracle Event Processing server is not already running, follow the

procedure in Section 7.5.1, "Run the HelloWorld Example from the helloworld
Domain" to start the server.

You must have a running server to successfully deploy the rebuilt application.

2. Open a new command window and change to the HelloWorld source directory,
located in /Oracle/Middleware/my_oep/oep/examples/source/applications/
helloworld.

3. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

4. Execute the deploy Ant target to deploy the application JAR file to Oracle Event
Processing:

prompt> ant -Daction=update deploy

You should see the following message printed to the output about every second:

 Message: HelloWorld - the current time is: 3:56:57 PM

Caution: This target overwrites the existing helloworld application
JAR file in the domain directory.

HelloWorld Example

7-6 Getting Started with Oracle Event Processing

This message indicates that the HelloWorld example has been redeployed and is
running correctly.

7.5.3 Description of the Ant Targets to Build Hello World
The build.xml file, located in the top level of the HelloWorld source directory,
contains the following targets to build and deploy the application:

■ clean: This target removes the dist and output working directories under the
current directory.

■ all: This target cleans, compiles, and puts the application into a JAR file called
com.bea.wlevs.example.helloworld_12.1.3.0_0.jar, and places the generated
JAR file into a dist directory below the current directory.

■ deploy: This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see Oracle Fusion Middleware Administering Oracle Event
Processing.

7.5.4 Implementation of the HelloWorld Example
The HelloWorld example, because it is relatively simple, does not use all of the
components and configuration files described in the general procedure for creating an
Oracle Event Processing application.

All the example files are located relative to the /Oracle/Middleware/my_
oep/examples/source/applications/helloworld directory.

The files used by the HelloWorld example include:

■ An EPN assembly file that describes each component in the application and how
all the components are connected together. The EPN assembly file extends the
standard Spring context file. The file also registers the event types used in the
application. You are required to include this XML file in your Oracle Event
Processing application.

In the example, the file is called
com.bea.wlevs.example.helloworld-context.xml and is located in the
~/META-INF/spring directory.

■ Java source file for the helloworldAdapter component.

In the example, the file is called HelloWorldAdapter.java and is located in the
~/src/com/bea/wlevs/adapter/examples/helloworld directory.

For a detailed description of this file and how to program the adapter Java files in
general, see Integrating an External Component Using a Custom Adapter in Oracle
Fusion Middleware Developing Application for Oracle Event Processing .

■ Java source file that describes the HelloWorldEvent event type.

In the example, the file is called HelloWorldEvent.java and is located in the
~/src/com/bea/wlevs/event/examples/helloworld directory.

For a detailed description of this file, and general information about programming
event types, see Defining and Using Event Types in Oracle Fusion Middleware
Developing Application for Oracle Event Processing .

■ An XML file that configures the helloworldProcessor and
helloworldOutputChannel components. An important part of this file is the set of
Oracle CQL rules that select the set of events that the HelloWorld application

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-7

processes. You are required to include a Oracle CQL processor configuration file in
your Oracle Event Processing application, although the adapter and channel
configuration is optional.

In the example, the file is called config.xml and is located in the
~/META-INF/wlevs directory.

■ A Java file that implements the helloworldBean component of the application, a
POJO that contains the business logic.

In the example, the file is called HelloWorldBean.java and is located in the
~/src/com/bea/wlevs/examples/helloworld directory.

For a detailed description of this file and general information about programming
event sinks, see Handling Events with Java in Oracle Fusion Middleware Developing
Application for Oracle Event Processing .

■ A MANIFEST.MF file that describes the contents of the OSGi bundle to be deployed
to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file and a description of creating the
OSGi bundle that you deploy to Oracle Event Processing, see Oracle Fusion
Middleware Developing Application for Oracle Event Processing

The HelloWorld example uses a build.xml Ant file to compile, assemble, and deploy
the OSGi bundle; see Section 7.5.2, "Build and Deploy the HelloWorld Example from
the Source Directory" for a description of this build.xml file if you also use Ant in
your development environment.

7.6 Oracle Continuous Query Language Example
The Oracle Continuous Query Language (Oracle CQL) example shows how to use the
Oracle Event Processing Visualizer Query Wizard to construct various types of Oracle
CQL queries.

Figure 7–2 shows the CQL example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

Note: This sample might not start on a configuration of multiple
coherence clusters that have the same default multicast address and
port numbers. The error message contains text similar to
... has been attempting to join the cluster at address
/239.255.0.1:9100 with TTL 4 for 30 seconds without success.

To get around this problem, specify unique addresses and ports to
create a distinct cluster.

Oracle Continuous Query Language Example

7-8 Getting Started with Oracle Event Processing

Figure 7–2 The CQL Example Event Processing Network

The application contains two separate event paths in its EPN:

■ Missing events: this event path consists of an adapter orderCVSAdapter connected
to a channel orderChannel. The orderChannel is connected to orderProcessor
which is connected to channel alertChannel which is connected to adapter
alertOutput.

This event path is used to detect missing events in a customer order workflow.

For more information on how to construct the query that the cqlProc processor
executes, see Section 7.6.4.1, "Create the Missing Event Query".

■ Moving average: The event path consists of channel stockChannel connected to
processor stockProcessor, which is connected to channel movingAvgChannel,
which is connected to adapter movingOutput.

This event path is used to compute a moving average on stock whose volume is
greater than 1000.

■ Cache: this event path consists of adapter adapter connected to channel S1
connected to Oracle CQL processor cacheProcessor connected to channel S2
connected to bean Bean. There is a cache stockCache also connected to the Oracle
CQL processor cacheProcessor. There is also a bean Loader.

This event path is used to access information from a cache in an Oracle CQL query.

7.6.1 Run the CQL Example
For optimal demonstration purposes, Oracle recommends that you run this example
on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel,
with a minimum of 2 GB of RAM.

The CQL application is pre-deployed to the cql_domain domain. To run the
application, you simply start an instance of Oracle Event Processing server.

To run the CQL example:
1. Open a command window and change to the default server directory of the CQL

domain directory, located in /Oracle/Middleware/my_oep/oep/examples/
domains/cql_domain/defaultserver.

Note: For more information about the various components in the
EPN, see the other samples in this book.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-9

2. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

prompt> startwlevs.cmd

b. On UNIX:

prompt> ./startwlevs.sh

The CQL application is now ready to receive data from the data feeds.

3. To simulate the data feed for the missing event query, open a new command
window.

4. Change to the /Oracle/Middleware/my_oep/oep/utils/load-generator.

5. Run the load generator using the orderData.prop properties file:

a. On Windows:

prompt> runloadgen.cmd orderData.prop

b. On UNIX:

prompt> ./runloadgen.sh orderData.prop

6. Change to the /Oracle/Middleware/my_oep/oep/utils/load-generator.

7. To simulate the data feed for the moving average query, open a new command
window

8. Run the load generator using the StockData.prop properties file:

a. On Windows:

prompt> runloadgen.cmd StockData.prop

b. On UNIX:

prompt> ./runloadgen.sh StockData.prop

9. To simulate the data feed for the cache query, you only need to run the example.

The load data is generated by Adaptor.java and the cache data is generated by
Loader.java. You can verify that data is flowing through by turning on statistics
in the Oracle Event Processing Visualizer Query Plan.

7.6.2 Build and Deploy the CQL Example
The CQL sample source directory contains the Java source, along with other required
resources such as configuration XML files, that make up the CQL application. The
build.xml Ant file contains targets to build and deploy the application to the cql_
domain domain, as described in Section 7.5.3, "Description of the Ant Targets to Build
Hello World."

To build and deploy the CQL example from the source directory:
1. If the CQL Oracle Event Processing instance is not already running, follow the

procedure in Section 7.6.1, "Run the CQL Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

Oracle Continuous Query Language Example

7-10 Getting Started with Oracle Event Processing

2. Open a new command window and change to the CQL source directory, located in
/Oracle/Middleware/my_oep/oep/examples/source/applications/cql.

3. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

4. Execute the deploy Ant target to deploy the application JAR file to Oracle Event
Processing:

prompt> ant -Dusername=oepadmin -Dpassword=welcome1 -Daction=update deploy

5. If the load generators required by the CQL application are not running, start them
as described in Section 7.6.1, "Run the CQL Example."

7.6.3 Description of the Ant Targets to Build the CQL Example
The build.xml file, located in the top-level directory of the CQL source, contains the
following targets to build and deploy the application:

■ clean: This target removes the dist and output working directories under the
current directory.

■ all: This target cleans, compiles, and puts the application into a JAR file called
com.bea.wlevs.example.cql_12.1.2.0_0.jar, and places the generated JAR file
into a dist directory below the current directory.

■ deploy: This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see Oracle Fusion Middleware Administering Oracle Event
Processing.

7.6.4 Implementation of the CQL Example
This section describes how to create the queries that the CQL example uses, including:

■ Section 7.6.4.1, "Create the Missing Event Query"

■ Section 7.6.4.2, "Create the Moving Average Query"

7.6.4.1 Create the Missing Event Query
This section describes how to use the Oracle Event Processing Visualizer Query
Wizard to create the Oracle CQL pattern matching query that cqlProc executes to
detect missing events.

Consider a customer order workflow in which you have customer order workflow
events flowing into the Oracle Event Processing system.

In a valid scenario, you see events in the order that Table 7–1 lists:

Caution: This target overwrites the existing CQL application JAR file
in the domain directory.

Table 7–1 Valid Order Workflow

Event Type Description

C Customer order

A Approval

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-11

However, it is an error if an order is shipped without an approval event as Table 7–2
lists:

You will create and test a query that detects the missing approval event and generates
an alert event:

■ "Create the missing event query:" on page 7-11

■ "Test the missing event query:" on page 7-29

Create the missing event query:
1. If the CQL Oracle Event Processing instance is not already running, follow the

procedure in Section 7.6.1, "Run the CQL Example" to start the server.

You must have a running server to use the Oracle Event Processing Visualizer.

2. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is
running and port refers to the Jetty NetIO port configured for the server (default
value 9002).

The Logon screen displays.

3. In the Logon screen, enter the Username oepadmin, Password welcome1 and click
Login.

The Oracle Event Processing Visualizer dashboard displays.

S Shipment

Table 7–2 Invalid Order Workflow

Event Type Description

C Customer order

S Shipment

Table 7–1 (Cont.) Valid Order Workflow

Event Type Description

Oracle Continuous Query Language Example

7-12 Getting Started with Oracle Event Processing

For more information about the Oracle Event Processing Visualizer user interface,
see Oracle Fusion Middleware Using Visualizer for Oracle Event Processing.

4. In the right panel, expand WLEventServerDomain > NonClusteredServer >
Applications.

5. Select the cql node.

The CQL application screen displays.

6. Select the Event Processing Network tab.

The Event Processing Network screen displays.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-13

7. Double-click the orderProcessor Oracle CQL processor icon.

The Oracle CQL processor screen displays.

8. Select the Query Wizard tab.

Oracle Continuous Query Language Example

7-14 Getting Started with Oracle Event Processing

The Query Wizard screen Displays.

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from
a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL query from a template.

For more information, see Oracle Fusion Middleware Using Visualizer for Oracle Event
Processing.

9. Click the Templates tab.

The Templates tab displays.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-15

10. Click and drag the Pattern Match Template from the Templates palette and drop it
anywhere in the Query Wizard canvas.

11. Double-click the SSource icon.

The SSource configuration screen displays.

Oracle Continuous Query Language Example

7-16 Getting Started with Oracle Event Processing

The source of your query is the orderChannel stream.

12. Configure the SSource as follows:

■ Select Stream as the Type.

■ Select orderChannel from the Select a source pull-down menu.

13. Click Save.

14. Click Save Query.

15. Double-click the Pattern icon.

The Pattern configuration screen displays.

Using the Pattern tab, you will define the pattern expression that matches when
missed events occur. The expression is made in terms of named conditions that
you will specify on the Define tab in a later step.

16. Enter the following expression in the Pattern Expression field:

CustOrder NoApproval*? Shipment

This pattern uses the Oracle CQL pattern quantifiers that Table 7–3 lists. Use the
pattern quantifiers to specify the allowed range of pattern matches. The
one-character pattern quantifiers are maximal (greedy). They attempt to match the
biggest quantity first. The two-character pattern quantifiers are minimal
(reluctant). They attempt to match the smallest quantity first.

Table 7–3 MATCH_RECOGNIZE Pattern Quantifiers

Maximal Minimal Description

* *? 0 or more times

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-17

For more information, see Oracle Fusion Middleware Oracle CQL Language Reference
for Oracle Event Processing.

17. Select orderid from the Partition By pull-down menu and click the Plus Sign
button to add this property to the PARTITION BY clause.

This ensures that Oracle Event Processing evaluates the missing event query on
each order.

18. Enter Orders in the Alias field.

This assigns an alias (Orders) for the pattern to simplify its use later in the query.

19. Click the Define tab.

The Define tab displays.

You will now define each of the conditions named in the pattern clause as
Table 7–4 lists:

+ +? 1 or more times.

? ?? 0 or 1 time.

Table 7–4 Condition Definitions

Condition Name Definition

CustOrder orderChannel.eventType = ’C’

NoApproval NOT(orderChannel.eventType = ’A’)

Table 7–3 (Cont.) MATCH_RECOGNIZE Pattern Quantifiers

Maximal Minimal Description

Oracle Continuous Query Language Example

7-18 Getting Started with Oracle Event Processing

20. Enter CustOrder in the Object Name field.

21. Click the Expression Builder button and configure the Expression Builder as
follows:

■ In the Variables list, double-click eventType.

■ In the Operands list, double-click =.

■ After the = operand, enter the value ’C’.

22. Click Save.

23. Click the Plus Sign button.

The condition definition is added to the Object List as follows:

Shipment orderChannel.eventType = ’C’

Table 7–4 (Cont.) Condition Definitions

Condition Name Definition

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-19

24. Enter NoApproval in the Object Name field.

25. Click the Expression Builder button and configure the Expression Builder:

■ In the Variables list, double-click eventType.

■ In the Operands list, double-click =.

■ After the = operand, enter the value ’A’.

■ Place parenthesis around the expression.

■ Place the insertion bar at the beginning of the expression, outside the open
parenthesis.

■ In the Operands list, double-click NOT.

Oracle Continuous Query Language Example

7-20 Getting Started with Oracle Event Processing

26. Click Save.

27. Click the Plus Sign button.

The condition definition is added to the Object List.

28. Enter Shipment in the Object Name field.

29. Click the Expression Builder button and configure the Expression Builder :

■ In the Variables list, double-click eventType.

■ In the Operands list, double-click =.

■ After the = operand, enter the value ’S’.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-21

30. Click Save.

31. Click the Plus Sign button.

The Define tab displays.

Oracle Continuous Query Language Example

7-22 Getting Started with Oracle Event Processing

32. Click the Measure tab.

The Measure tab displays.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-23

Use the Measure tab to define expressions in a MATCH_RECOGNIZE condition and to
bind stream elements that match conditions in the DEFINE clause to arguments that
you can include in the select statement of a query.

Use the Measure tab to specify the following:

■ CustOrder.orderid AS orderid

■ CustOrder.amount AS amount

For more information, see Oracle Fusion Middleware Oracle CQL Language
Reference for Oracle Event Processing.

33. Enter orderid in the Object Name field.

34. Click the Expression Builder button and configure the Expression Builder:

■ In the Variables list, double-click CustOrder.orderid.

35. Click Save.

36. Click the Plus Sign button.

37. Enter amount in the Object Name field.

38. Click the Expression Builder button and configure the Expression Builder:

■ In the Variables list, double-click CustOrder.amount.

Oracle Continuous Query Language Example

7-24 Getting Started with Oracle Event Processing

39. Click Save.

40. Click the Plus Sign button.

The Measure tab displays.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-25

41. Click Save.

42. Double-click the Select icon.

The Select configuration screen appears as follows:

Oracle Continuous Query Language Example

7-26 Getting Started with Oracle Event Processing

43. Configure the Project tab as follows:

■ Select AlertEvent from the Select or Input Event Type pull-down menu.

■ Select Orders from the Select a source pull-down menu.

44. Double-click orderid in the Properties list and select orderid from the Select or
Input Alias pull-down menu.

45. Click the Plus Sign button to add the property to the Generated CQL Statement.

46. Double-click amount in the Properties list and select amount from the Select or
Input Alias pull-down menu.

47. Click the Plus Sign button to add the property to the Generated CQL Statement.

48. Click in the Project Expression field and enter the value "Error - Missing
Approval" and select alertType from the Select or Input Alias pull-down menu.

49. Click the Plus Sign button to add the property to the Generated CQL Statement.

The Project tab displays.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-27

50. Click Save.

51. Click Save Query.

52. Double-click the Output icon.

The Output configuration screen displays.

Oracle Continuous Query Language Example

7-28 Getting Started with Oracle Event Processing

53. Configure the Output as follows:

■ Select Query.

■ Enter Tracking as the Query Name.

54. Click Inject Rule.

The Inject Rule Confirmation dialog displays.

55. Click OK.

The Query Wizard adds the rule to the cqlProc processor.

56. Click Save.

57. Click the CQL Rules tab.

The CQL Rules tab displays.

58. Click the Query radio button.

Confirm that your Tracking query is present.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-29

Test the missing event query:
1. To simulate the data feed, change to the /Oracle/Middleware/my_

oep/utils/load-generator directory.

2. Run the load generator using the orderData.prop properties file:

a. On Windows:

prompt> runloadgen.cmd orderData.prop
b. On UNIX:

prompt> ./runloadgen.sh orderData.prop

3. In the Oracle Event Processing Visualizer, click the ViewStream button in the top
panel.

The Stream Visualizer screen displays.

Oracle Continuous Query Language Example

7-30 Getting Started with Oracle Event Processing

4. Click Initialize Client.

5. Click the Subscribe tab.

6. Select the orderalert radio button.

7. Click Subscribe.

As missing events are detected, the Oracle Event Processing updates the Received
Messages area showing the AlertEvents generated.

7.6.4.2 Create the Moving Average Query
This section describes how to use the Oracle Event Processing Visualizer Query
Wizard to create the Oracle CQL moving average query that the stockProc processor
executes.

You do this in two steps:

■ First, you create a view (the Oracle CQL equivalent of a subquery) that serves as
the source of the moving average query.

See "Create a view source for the moving average query:" on page 7-31.

■ Second, you create the moving average query using the source view.

See "Create the moving average query using the view source:" on page 7-43.

■ Finally, you test the moving average query.

See "Test the moving average query:" on page 7-61.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-31

Create a view source for the moving average query:
1. If the CQL Oracle Event Processing instance is not already running, follow the

procedure in Section 7.6.1, "Run the CQL Example" to start the server.

You must have a running server to use the Oracle Event Processing Visualizer.

2. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is
running and port refers to the Jetty NetIO port configured for the server (default
value 9002).

The Logon screen displays.

3. In the Logon screen, enter the Username oepadmin and Password welcome1, and
click Login.

The Oracle Event Processing Visualizer dashboard displays.

Oracle Continuous Query Language Example

7-32 Getting Started with Oracle Event Processing

For more information about the Oracle Event Processing Visualizer user interface,
see Oracle Fusion Middleware Using Visualizer for Oracle Event Processing.

4. In the right panel, expand WLEventServerDomain > NonClusteredServer >
Applications.

5. Select the cql node.

The CQL application screen displays.

6. Select the Event Processing Network tab.

The Event Processing Network screen displays.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-33

7. Double-click the stockProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 7–3 shows.

Figure 7–3 Oracle CQL Processor: General Tab

8. Select the Query Wizard tab.

The Query Wizard screen displays.

Oracle Continuous Query Language Example

7-34 Getting Started with Oracle Event Processing

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from
a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL view and query from
individual Oracle CQL constructs.

For more information, see Oracle Fusion Middleware Using Visualizer for Oracle Event
Processing.

9. Click and drag an SSource icon (Stream Source) from the CQL Constructs palette
and drop it anywhere in the Query Wizard canvas as.

10. Double-click the SSource icon.

The SSource configuration screen appears.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-35

The source of your view will be the stockChannel stream. You want to select stock
events from this stream where the volume is greater than 1000. This will be the
source for your moving average query.

11. Configure the SSource as follows:

■ Select Stream as the Type.

The source of your view is the stockChannel stream.

■ Select stockChannel from the Select a source pull-down menu.

■ Enter the alias StockVolGt1000 in the AS field.

12. Click Save.

13. Click Save Query.

14. When prompted, enter StockVolGt1000 in the Query Id field.

15. Click Save.

Next, you will add an Oracle CQL filter.

16. Click and drag a Filter icon from the CQL Constructs palette and drop it anywhere
in the Query Wizard canvas as follows:

Oracle Continuous Query Language Example

7-36 Getting Started with Oracle Event Processing

17. Click the SSource icon and drag to the Window icon to connect the Oracle CQL
constructs as follows:

18. Double-click the Filter icon.

The Filter configuration screen displays:

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-37

19. Click the Expression Builder button.

The Expression Builder dialog appears.

20. Configure the Expression Builder as follows:

■ Select StockVolGt100 from the Select an Event Type pull-down menu to
define the variables you can use in this expression.

■ Double-click the volume variable to add it to the Expression Builder field.

■ Double-click > in the Operands list to add it to the Expression Builder field.

■ Enter the value 1000 after the > operand.

Oracle Continuous Query Language Example

7-38 Getting Started with Oracle Event Processing

21. Click Save.

22. Click Add Filter.

The Query Wizard adds the expression to the Generated CQL Statement as
follows:

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-39

23. Click Save.

24. Click Save Query.

Next you want to add a select statement.

25. Click and drag a Select icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as follows:

26. Click the Filter icon and drag to the Select icon to connect the Oracle CQL
constructs.

Oracle Continuous Query Language Example

7-40 Getting Started with Oracle Event Processing

27. Double-click the Select icon.

The Select configuration screen appears.

You want to select price, symbol, and volume from your StockVolGt1000 stream.

28. Configure the Select as follows:

■ Select StockVolGt1000 from the Select a source pull-down menu.

■ Select the price property and click the Plus Sign button.

The Query Wizard adds the property to Generated CQL Statement

■ Repeat for the symbol and volume properties.

The Select configuration dialog displays.

29. Click Save.

30. Click Save Query.

Finally, you will add an Output.

31. Click and drag an Output icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as follows:

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-41

32. Click the Select icon and drag to the Output icon to connect the Oracle CQL
constructs.

33. Double-click the Output icon.

The Output configuration screen appears.

34. Configure the Output as follows:

■ Select View.

■ Configure View Name as StockVolGt1000.

■ Delete the contents of the View Schema field.

You can let the Oracle Event Processing server define the view schema for you.

Oracle Continuous Query Language Example

7-42 Getting Started with Oracle Event Processing

35. Click Inject Rule.

The Inject Rule Confirmation dialog appears as follows:

36. Click OK.

The Query Wizard adds the rule to the cqlProc processor.

37. Click Save.

38. Click the CQL Rules tab.

The CQL Rules tab displays.

39. Click the View radio button.

Confirm that your StockVolGt1000 view is present.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-43

Create the moving average query using the view source:
1. If the CQL Oracle Event Processing instance is not already running, follow the

procedure in Section 7.6.1, "Run the CQL Example" to start the server.

You must have a running server to use the Oracle Event Processing Visualizer.

2. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle Event Processing is
running and port refers to the Jetty NetIO port configured for the server (default
value 9002).

The Logon screen displays.

Oracle Continuous Query Language Example

7-44 Getting Started with Oracle Event Processing

3. In the Logon screen, enter the Username oepadmin and Password welcome1, and
click Login.

The Oracle Event Processing Visualizer dashboard displays.

For more information about the Oracle Event Processing Visualizer user interface,
see Oracle Fusion Middleware Using Visualizer for Oracle Event Processing.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-45

4. In the left panel, expand WLEventServerDomain > NonClusteredServer >
Applications.

5. Select the cql stage.

The CQL application screen displays.

6. Select the Event Processing Network tab.

The Event Processing Network screen displays.

7. Double-click the stockProcessor Oracle CQL processor icon.

Oracle Continuous Query Language Example

7-46 Getting Started with Oracle Event Processing

The Oracle CQL processor screen displays.

8. Select the Query Wizard tab.

The Query Wizard screen displays. If you have been recently creating or editing
queries for this Oracle CQL processor, you might see those queries on the Query
Wizard canvas. Otherwise, the canvas will be blank.

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query from
a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL view and query from
individual Oracle CQL constructs.

For more information, see Oracle Fusion Middleware Using Visualizer for Oracle Event
Processing.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-47

9. Click and drag an SSource icon (Stream Source) from the CQL Constructs palette
and drop it anywhere in the Query Wizard canvas as follows:

10. Double-click the SSource icon.

The SSource configuration screen appears.

11. Configure the SSource dialog as follows:

■ Select View as the Type.

■ Select the StockVolGt1000 view from the Select a source pull-down menu.

Oracle Continuous Query Language Example

7-48 Getting Started with Oracle Event Processing

12. Click Save.

13. Click Save Query.

14. Click and drag a Window icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as follows:

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-49

15. Click the SSource icon and drag to the Window icon to connect the Oracle CQL
constructs.

16. Double-click the Window icon.

The SSource configuration screen appears.

You want to create a sliding window over the last 2 events, partitioned by symbol.

17. Configure the Window dialog as follows:

■ Select symbol in the Source Property List to add it to the Partition List.

■ Select Partition as the Type.

■ Select Row Based and enter 2 in the Row Based field.

18. Click Add Window.

The Query Wizard adds the sliding window to the Generated CQL Statement as
follows:

Oracle Continuous Query Language Example

7-50 Getting Started with Oracle Event Processing

19. Click Save.

20. Click Save Query.

21. Click and drag a Select icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as follows:

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-51

22. Click the Window icon and drag to the Select icon to connect the Oracle CQL
constructs.

23. Double-click the Select icon.

The Select configuration screen appears.

24. Select StockVolGt1000 from the Select a source pull-down menu.

This is the source of moving average query: the view you created earlier (see
"Create a view source for the moving average query:" on page 7-31).

25. Select MovingAvgEvent from the Target Event Type pull-down menu.

This is the output event your moving average query will produced. You will map
properties from the source events to this output event.

26. In the Source Properties list, select symbol.

The selected source property is added to the Project Expression as follows:

Oracle Continuous Query Language Example

7-52 Getting Started with Oracle Event Processing

In this case, you just want to map the source property symbol to output event
property symbol as is.

27. Click the pull-down menu next to the AS field and select symbol.

28. Click the Plus Sign button.

The source property is added to the project expression of the Generated CQL
Statement as follows:

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-53

29. In the Source Properties list, select price.

The selected source property is added to the Project Expression as follows:

Oracle Continuous Query Language Example

7-54 Getting Started with Oracle Event Processing

In this case, you want to process the source property price before you map it to
the output event.

30. Click the Expression Builder button.

The Expression Builder dialog appears.

31. Select Aggregate Function from the Select a function type pull-down menu.

A list of the aggregate functions that Oracle CQL provides is displayed. You are
going to use the AVG function.

32. Select the StockVolGt1000.price in the Expression Builder field.

33. Double-click the AVG function.

The AVG() function is wrapped around your selection in the Expression Builder
field as follows:

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-55

34. Click Save.

The expression is added to the Project Expression field as follows:

Oracle Continuous Query Language Example

7-56 Getting Started with Oracle Event Processing

35. Click the pull-down menu next to the AS field and select movingAvgPrice.

36. Click the plus Sign button.

The source property is added to the project expression of the Generated CQL
Statement as follows:

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-57

37. Click Validate.

A validation error dialog is shown as follows:

Because you are partitioning, you must specify a GROUP BY clause.

38. Select the Group tab.

The Group tab appears.

39. Configure the Group tab as follows:

■ Select StockVolGt1000 from the Select a source pull-down menu.

■ Select symbol from the Properties list.

■ Click the Plus Sign button.

The symbol property is added to GROUP BY clause as follows:

Oracle Continuous Query Language Example

7-58 Getting Started with Oracle Event Processing

40. Click Save.

41. Click Save Query.

Next, you want to connect the query to an output.

42. Click and drag an Output icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as follows:

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-59

43. Click the Select icon and drag to the Output icon to connect the Oracle CQL
constructs.

44. Double-click the Output icon.

The Output configuration screen appears.

45. Configure the Output as follows:

■ Select Query.

■ Enter MovingAverage as the Query Name.

Oracle Continuous Query Language Example

7-60 Getting Started with Oracle Event Processing

46. Click Inject Rule.

The Inject Rule Confirmation dialog displays.

47. Click OK.

The Query Wizard adds the rule to the cqlProc processor.

48. Click Save.

49. Click the CQL Rules tab.

The CQL Rules tab displays.

50. Click the Query radio button.

Confirm that your MovingAverage query is present.

Oracle Continuous Query Language Example

Oracle Event Processing Samples 7-61

Test the moving average query:
1. To simulate the data feed for the moving average query, change to the

/Oracle/Middleware/my_oep/utils/load-generator directory.

2. Run the load generator using the stockData.prop properties file:

a. On Windows:

prompt> runloadgen.cmd stockData.prop

b. On UNIX:

prompt> ./runloadgen.sh stockData.prop

3. In the Oracle Event Processing Visualizer, click the ViewStream button in the top
panel.

The Stream Visualizer screen displays.

Oracle Spatial Example

7-62 Getting Started with Oracle Event Processing

4. Click Initialize Client.

5. Enter /stockmoving in the Initialize client field.

6. Click Subscribe.

As the moving average query outputs events, the Oracle Event Processing updates
the Received Messages area showing the events generated.

7.7 Oracle Spatial Example
This example shows how to use Oracle Spatial with Oracle CQL queries to process a
stream of Global Positioning System (GPS) events to track the GPS location of buses
and generate alerts when a bus arrives at its pre-determined bus stop positions.

Figure 7–4 shows Oracle Spatial example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

Oracle Spatial Example

Oracle Event Processing Samples 7-63

Figure 7–4 Oracle Spatial Example Event Processing Network

The example includes the following components:

■ BusPositionGen: Component that simulates an input stream of bus position GPS
events. It uses the Oracle Event Processing loadgen utility and csvgen adapter
provider to read in comma separated values (CSV) and deliver them to the EPN as
BusPos events.

■ BusStopAdapter: Custom adapter component that generates bus stop positions
based on /Oracle/Middleware/my_oep/examples/domains/spatial_
domain/defaultserver/applications/spatial_sample/bus_stops.csv.

■ BusPosStream: Component that transmits BusPos events to the Processor as a
stream.

■ BusStopRelation: Component that transmits BusPos events to the Processor as a
relation.

■ Processor: Component that executes Oracle CQL queries on the incoming BusPos
events.

■ BusStopChannel, BusPosChannel, and BusStopArrivalChannel: Components that
each specify a different selector to transmit the results of a different query from the
Processor component to the appropriate outbound adapter or output bean.

■ BusStopPub, BusPosPub, and BusStopArrivalPub: Components that publish the
results of the Processor component’s queries.

■ BusStopArrivalOutputBean: POJO event bean component that logs a message for
each insert, delete, and update event to help visualize the relation offered by the
BusStopArrivalChannel.

For more information about data cartridges, see Oracle Fusion Middleware Oracle
CQL Language Reference for Oracle Event Processing.

7.7.1 Run the Oracle Spatial Example
The Oracle Spatial application is pre-deployed to the spatial_domain domain. To run
the application, you simply start an instance of Oracle Event Processing server.

Run the Oracle Spatial example from the spatial_domain domain:
1. Open a command window and change to the default server directory of the Oracle

Spatial example domain directory, located in /Oracle/Middleware/my_oep/oep/
examples/domains/spatial_domain/defaultserver.

Oracle Spatial Example

7-64 Getting Started with Oracle Event Processing

2. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

prompt> startwlevs.cmd

b. On UNIX:

prompt> ./startwlevs.sh

Wait for the console log to show:

<Mar 4, 2010 2:13:15 PM EST> <Notice> <Spring> <BEA-2047000> <The
application context for "spatial_sample" was started successfully>
<Mar 4, 2010 2:13:15 PM EST> <Notice> <Server> <BEA-2046000> <Server
STARTED>

This message indicates that the Oracle Spatial example is running correctly.

3. On the same host as the Oracle Spatial example is running, launch a browser and
navigate to http://localhost:9002/bus/web/main.html.

The Oracle Spatial example Web page displays.

Note: You cannot run this example on one host and browse to it from
another host. This is a limitation of the Google API Key that the
example uses and is not a limitation of Oracle Event Processing.

Oracle Spatial Example

Oracle Event Processing Samples 7-65

Click the Bus Top Arrivals tab to view bus stop arrivals as follows:

4. Execute the Oracle Event Processing load generator to generate sample data:

a. Open a command prompt and navigate to /Oracle/Middleware/my_
oep/utils/load-generator.

b. On Windows, type:

* runloadgen.cmd bus_positions.prop

c. On UNIX, type:

* ./runloadgen.sh bus_positions.prop

5. Observe the bus movements and alerts in the browser as follows:

Oracle Spatial Example

7-66 Getting Started with Oracle Event Processing

7.7.2 Build and Deploy the Oracle Spatial Example
The Oracle Spatial sample source directory contains the Java source, along with other
required resources such as configuration XML files, that make up the Oracle Spatial
application. The build.xml Ant file contains targets to build and deploy the
application to the spatial_domain domain.

For more information, see Section 7.5.3, "Description of the Ant Targets to Build Hello
World".

Build and deploy the Oracle Spatial example from the source directory:
1. If the spatial_domain Oracle Event Processing instance is not already running,

follow the procedure in Section 7.7.1, "Run the Oracle Spatial Example" to start the
server.

You must have a running server to successfully deploy the rebuilt application.

2. Open a new command window and change to the Oracle Spatial source directory,
located in /Oracle/Middleware/my_oep/oep/examples/source/applications/
spatial.

3. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

4. Execute the deploy Ant target to deploy the application JAR file to Oracle Event
Processing:

prompt> ant -Daction=update deploy

Oracle Spatial Example

Oracle Event Processing Samples 7-67

7.7.3 Description of the Ant Targets to Build the Oracle Spatial Example
The build.xml file, located in the top level of the Oracle Spatial source directory,
contains the following targets to build and deploy the application:

■ clean: This target removes the dist and output working directories under the
current directory.

■ all: This target cleans, compiles, and outs the application into a JAR file called
com.bea.wlevs.example.spatial_12.1.2.0_0.jar, and places the generated JAR file
into a dist directory below the current directory.

■ deploy: This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see Oracle Fusion Middleware Administering Oracle Event
Processing.

7.7.4 Implementation of the Oracle Spatial Example
All the files of the Oracle Spatial example are located relative to the
/Oracle/Middleware/my_oep/examples/source/applications/spatial directory.

The files used by the Oracle Spatial example include:

■ An EPN assembly file that describes each component in the application and how
all the components are connected together. You are required to include this XML
file in your Oracle Event Processing application.

In the example, the file is called context.xml and is located in the
~/META-INF/spring directory.

■ A component configuration file that configures the various components on the
EPN including the processor component of the application:

In the example, this file is called config.xml and is located in the
~/META-INF/wlevs directory.

■ Java files that implement:

– BusStopAdapter: Custom adapter component that generates bus stop
positions based on /Oracle/Middleware/my_oep/examples/domains/spatial_
domain/defaultserver/applications/spatial_sample/bus_stops.csv.

– OutputBean: POJO event bean component that logs a message for each insert,
delete, and update event to help visualize the relation offered by the
BusStopArrivalChannel

– OrdsHelper: Helper class that provides method getOrds to return the
ordinates from a JGeometry as a List of Double values.

These Java files are located in the
~/source/applications/spatial/src/com/oracle/cep/sample/spatial
directory.

For additional information about the Oracle Event Processing APIs referenced in
this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Event
Processing.

Caution: This target overwrites the existing Oracle Spatial
application JAR file in the domain directory.

Foreign Exchange (FX) Example

7-68 Getting Started with Oracle Event Processing

■ A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle Event Processing, see Oracle Fusion
Middleware Developing Application for Oracle Event Processing .

The Oracle Spatial example uses a build.xml Ant file to compile, assemble, and
deploy the OSGi bundle; see Section 7.7.2, "Build and Deploy the Oracle Spatial
Example" for a description of this build.xml file if you also use Ant in your
development environment.

7.8 Foreign Exchange (FX) Example
The foreign exchange example, called FX for simplicity, is a more complex example
than the HelloWorld example because it includes multiple Oracle CQL processors that
handle information from multiple data feeds. In the example, the data feeds are
simulated using the Oracle Event Processing load generator utility.

Figure 7–5 shows the FX example Event Processing Network (EPN). The EPN contains
the components that make up the application and how they fit together.

Figure 7–5 FX Example Event Processing Network

In this scenario, three data feeds, simulated using the load generator, send a constant
pair of values from different parts of the world; the value pairs consist of a currency
pair, such as USDEUR for US dollar - European euro, and an exchange rate between
the two currencies. The fxMarketAmer, fxMarketAsia, and fxMarketEuro adapters
receive the data from the feeds, convert them into events, and pass them to the
corresponding FilterAmer, FilterAsia, and FilterEuro processors. Each Oracle CQL
processor performs an initial stale check to ensure that no event is more than 1 second
old and then a boundary check to ensure that the exchange rate between the two
currencies is within a current boundary. The Oracle CQL processor also only selects a
specific currency pair from a particular channel; for example, the server selects
USDEUR from the simulated American data feed, but rejects all other pairs, such as
USDAUD (Australian dollar).

After the data from each data feed provider passes this initial preparation phase, a
different Oracle CQL processor, called FindCrossRates, joins all events across all
providers, calculates the mid-point between the maximum and minimum rate, and
then applies a trader-specified spread. Finally, the Oracle CQL processor forwards the

Foreign Exchange (FX) Example

Oracle Event Processing Samples 7-69

rate to the POJO that contains the business code; in this example, the POJO simply
publishes the rate to clients.

The Oracle Event Processing monitor is configured to watch if the event latency in the
last step exceeds some threshold, such as no updated rates in a 30 second time-span,
and if there is too much variance between two consecutive rates for the same currency
pair. Finally, the last rate of each currency pair is forwarded to the Oracle Event
Processing http pub-sub server.

7.8.1 Run the Foreign Exchange Example
For optimal demonstration purposes, Oracle recommends that you run this example
on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel,
with a minimum of 2 GB of RAM.

The Foreign Exchange (FX) application is pre-deployed to the fx_domain domain. To
run the application, you simply start an instance of Oracle Event Processing server.

Run the foreign exchange example:
1. Open a command window and change to the default server directory of the FX

domain directory, located in /Oracle/Middleware/my_oep/oep/examples/
domains/fx_domain/defaultserver.

2. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

prompt> startwlevs.cmd

b. On UNIX:

prompt> ./startwlevs.sh

3. When prompted, enter wlevs for the user name and password.

The FX application is now ready to receive data from the data feeds.

4. To simulate an American data feed, open a new command window.

5. Change to the /Oracle/Middleware/my_oep/utils/load-generator directory.

6. Run the load generator using the fxAmer.prop properties file:

a. On Windows:

prompt> runloadgen.cmd fxAmer.prop

b. On UNIX:

prompt> ./runloadgen.sh fxAmer.prop

7. Repeat steps 4 - 6 to simulate an Asian data feed, using the fxAsia.prop properties
file:

a. On Windows:

prompt> runloadgen.cmd fxAsia.prop

b. On UNIX:

prompt> ./runloadgen.sh fxAsia.prop

Foreign Exchange (FX) Example

7-70 Getting Started with Oracle Event Processing

8. Repeat steps 4 - 6 to simulate an European data feed, using the fxEuro.prop
properties file:

a. On Windows:

prompt> runloadgen.cmd fxEuro.prop

b. On UNIX:

prompt> ./runloadgen.sh fxEuro.prop

After the server status messages scroll by in the command window from which
you started the server, and the three load generators start, you should see
messages similar to the following being printed to the server command window
(the message will likely be on one line):

OutputBean:onEvent() +
<TupleValue>

<EventType>SpreaderOuputEvent</EventType>
<ObjectName>FindCrossRatesRule</ObjectName>
<Timestamp>1843704855846</Timestamp>
<TupleKind>null</TupleKind>
<DoubleAttribute>

<Value>90.08350000074516</Value>
</DoubleAttribute>
<CharAttribute>

<Value>USD</Value>
<Length>3</Length>

</CharAttribute>
<CharAttribute>

<Value>JPY</Value>
<Length>3</Length>

</CharAttribute>
<IsTotalOrderGuarantee>false</IsTotalOrderGuarantee>

</TupleValue>

These messages indicate that the Foreign Exchange example is running correctly.
The output shows the cross rates of US dollars to Japanese yen and US dollars to
UK pounds sterling.

7.8.2 Build and Deploy the Foreign Exchange Example from the Source Directory
The Foreign Exchange (FX) sample source directory contains the Java source, along
with other required resources such as configuration XML files, that make up the FX
application. The build.xml Ant file contains targets to build and deploy the
application to the fx_domain domain, as described in Section 7.5.3, "Description of the
Ant Targets to Build Hello World."

Build and deploy the foreign exchange example from the source directory:
1. If the FX Oracle Event Processing instance is not already running, follow the

procedure in Section 7.8.1, "Run the Foreign Exchange Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

2. Open a new command window and change to the FX source directory, located in
/Oracle/Middleware/my_oep/oep/examples/source/applications/fx.

3. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

Foreign Exchange (FX) Example

Oracle Event Processing Samples 7-71

4. Execute the deploy Ant target to deploy the application JAR file to Oracle Event
Processing:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

5. If the load generators required by the FX application are not running, start them as
described in Section 7.8.1, "Run the Foreign Exchange Example."

After the server starts, you should see the following message printed to the
output:

{crossRate=USDJPY, internalPrice=119.09934499999781}, {crossRate=USDGBP,
internalPrice=0.5031949999999915}, {crossRate=USDJPY,
internalPrice=117.73945624999783}

This message indicates that the FX example has been redeployed and is running
correctly.

7.8.3 Description of the Ant Targets to Build FX
The build.xml file, located in the top-level directory of the FX source, contains the
following targets to build and deploy the application:

■ clean: This target removes the dist and output working directories under the
current directory.

■ all: This target cleans, compiles, and puts the application into a JAR file called
com.bea.wlevs.example.fx_12.1.3.0_0.jar, and places the generated JAR file
into a dist directory below the current directory.

■ deploy: This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see Oracle Fusion Middleware Administering Oracle Event
Processing.

7.8.4 Implementation of the FX Example
All the files of the FX example are located relative to the /Oracle/Middleware/my_
oep/examples/source/applications/fx directory.

The files used by the FX example include:

■ An EPN assembly file that describes each component in the application and how
all the components are connected together. You are required to include this XML
file in your Oracle Event Processing application.

In the example, the file is called com.oracle.cep.sample.fx.context.xml and is
located in the ~/META-INF/spring directory.

■ The processor.xml file configures the processor components for the application:

The filterAmer, filterAsia, filterEuro, and FindCrossRates processors, all in a
single file. This XML file includes the Oracle CQL rules that select particular
currency pairs from particular simulated market feeds and joins together all the
events that were selected by the pre-processors, calculates an internal price for the

Caution: This target overwrites the existing FX application JAR file
in the domain directory.

Signal Generation Example

7-72 Getting Started with Oracle Event Processing

particular currency pair, and then calculates the cross rate. In the example, this file
is called spreader.xml and is located in the ~/META-INF/wlevs directory.

The summarizeResults Oracle CQL processor includes the Oracle CQL rule that
summarizes the results of the FindCrossRates processor. In the example, this file
is called SummarizeResults.xml and is located in the ~/META-INF/wlevs directory.

■ An XML file that configures the PublishSummaryResults http pub-sub adapter. In
the example, this file is called PubSubAdapterConfiguration.xml and is located in
the ~/META-INF/wlevs directory.

■ A Java file that implements the OutputBean component of the application, a POJO
that contains the business logic. This POJO prints out to the screen the events that
it receives, programmed in the onEvent method. The POJO also registers into the
event type repository the ForeignExchangeEvent event type.

In the example, the file is called OutputBean.java and is located in the
~/src/com/oracle/cep/sample/fx directory.

For additional information about the Oracle Event Processing APIs referenced in
this POJO, see Oracle Fusion Middleware Java API Reference for Oracle Event
Processing.

■ A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle Event Processing, see Overview of
Application Assembly and Deployment in Oracle Fusion Middleware Developing
Application for Oracle Event Processing .

The FX example uses a build.xml Ant file to compile, assemble, and deploy the
OSGi bundle; see Section 7.8.2, "Build and Deploy the Foreign Exchange Example
from the Source Directory" for a description of this build.xml file if you also use
Ant in your development environment.

7.9 Signal Generation Example
The signal generation sample application receives simulated market data and verifies
if the price of a security has fluctuated more than two percent. The application also
detects the pattern occurring by keeping track of successive stock prices for a
particular symbol; if more than three successive prices are larger than the one before it,
this is considered a pattern.

Figure 7–6 shows the signal generation example Event Processing Network (EPN). The
EPN contains the components that make up the application and how they fit together.

Figure 7–6 The Signal Generation Example Event Processing Network

Signal Generation Example

Oracle Event Processing Samples 7-73

The application simulates a market data feed using the Oracle Event Processing load
generator utility; in this example, the load generator generates up to 10,000 messages
per second. The example includes an HTML dashboard which displays the matched
events along with the latencies; events consist of a stock symbol, a timestamp, and the
price.

The example demonstrates very low latencies, with minimum latency jitter under high
throughputs. Once the application starts running, the processor matches an average of
800 messages per second. If the application is run on the minimum configured system,
the example shows very low average latencies (30-300 microsecond, on average) with
minimal latency spikes (low milliseconds).

The example computes and displays latency values based on the difference between a
timestamp generated on the load generator and timestamp on Oracle Event
Processing. Computing valid latencies requires very tight clock synchronization, such
as 1 millisecond, between the computer running the load generator and the computer
running Oracle Event Processing. For this reason, Oracle recommends running both
the load generator and Oracle Event Processing on a single multi-CPU computer
where they will share a common clock.

The example also shows how to use the Oracle Event Processing event caching feature.
In particular the single processor in the EPN sends events to both an event bean and a
cache.

The example also demonstrates how to use Oracle CQL queries.

7.9.1 Run the Signal Generation Example
For optimal demonstration purposes, Oracle recommends that you run this example
on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel,
with a minimum of 2 GB of RAM.

The signalgeneration_domain domain contains a single application: the signal
generation sample application. To run the signal generation application, you simply
start an instance of Oracle Event Processing in that domain.

Run the signal generation example:
1. Open a command window and change to the default server directory of the

signalgeneration_domain domain directory, located in /Oracle/Middleware/my_
oep/oep/examples/domains/signalgeneration_domain/defaultserver.

2. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

prompt> startwlevs.cmd

b. On UNIX:

prompt> ./startwlevs.sh

3. When prompted, enter wlevs for the user name and password.

4. Wait until you see console messages like this:

<Apr 24, 2009 11:40:37 AM EDT> <Notice> <Server> <BEA-2046000> <Server STARTED>
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0

Signal Generation Example

7-74 Getting Started with Oracle Event Processing

...

The signal generation application is now ready to receive data from the data feeds.

Next, to simulate a data feed, you use a load generator programmed specifically
for the example.

5. 0pen a new command window.

6. Change to the /Oracle/Middleware/my_
oep/examples/domains/signalgeneration_domain/defaultserver/utils
directory.

7. Run the startDataFeed command:

a. On Windows:

prompt> startDataFeed.cmd

b. On UNIX:

prompt> ./startDataFeed.sh

8. Invoke the example dashboard by starting a browser and opening the following
HTML page:

 http://host:9002/signalgeneration/dashboard.html

Replace host with the name of the computer on which Oracle Event Processing is
running; if it is the same computer as your browser, you can use localhost.

9. In the browser, click Start on the HTML page.

You should start seeing the events that match the Oracle CQL rules configured for
this example as follows:

Signal Generation Example

Oracle Event Processing Samples 7-75

7.9.2 Build and Deploy the Signal Generation Example from the Source Directory
The signal generation sample source directory contains the Java source, along with
other required resources, such as configuration XML files, EPN assembly file, and
DOJO client JavaScript libraries, that make up the signal generation application. The
build.xml Ant file contains targets to build and deploy the application to the
signalgeneration_domain domain, as described in Section 7.9.3, "Description of the
Ant Targets to Build Signal Generation."

Build and deploy the signal generation example from the source directory:
1. If the signal generation Oracle Event Processing instance is not already running,

follow the procedure in Section 7.9.1, "Run the Signal Generation Example" to start
the server. You must have a running server to successfully deploy the rebuilt
application.

2. Open a new command window and change to the signal generation source
directory, located in /Oracle/Middleware/my_oep/oep/examples/source/
applications/signalgeneration.

3. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

4. Execute the deploy Ant target to deploy the application JAR file to the
/Oracle/Middleware/my_oep/examples/domains/signalgeneration_
domain/defaultserver/applications/signalgeneration directory:

prompt> ant deploy

Signal Generation Example

7-76 Getting Started with Oracle Event Processing

5. If the load generator required by the signal generation application is not running,
start it as described in Section 7.9.1, "Run the Signal Generation Example."

6. Invoke the example dashboard as described in Section 7.9.1, "Run the Signal
Generation Example."

7.9.3 Description of the Ant Targets to Build Signal Generation
The build.xml file, located in the top-level directory of the signal generation example
source, contains the following targets to build and deploy the application:

■ clean: This target removes the dist and output working directories under the
current directory.

■ all: This target cleans, compiles, and puts the application into a JAR file called
com.bea.wlevs.example.signalgen_12.1.2.0_0.jar, and places the generated
JAR file into a dist directory below the current directory.

■ deploy: This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see Oracle Fusion Middleware Administering Oracle Event
Processing.

7.9.4 Implementation of the Signal Generation Example
All the files of the signal generation are located relative to the
/Oracle/Middleware/my_oep/examples/source/applications/signalgeneration
directory.

The files used by the signal generation example include:

■ A EPN assembly file that describes each component in the application and how all
the components are connected together.

In the example, the file is called epn_assembly.xml and is located in the
~/META-INF/spring directory.

■ An XML file that configures the processor component of the application; this file is
called config.xml and is located in the ~/META-INF/wlevs directory

The config.xml file configures the processor1 Oracle CQL processor, in particular
the Oracle CQL rules that verify whether the price of a security has fluctuated
more than two percent and whether a trend has occurred in its price.

■ A Java file that implements the SignalgenOutputBean component of the
application, a POJO that contains the business logic. This POJO is an HttpServlet
and an EventSink. Its onEvent method consumes PercentTick and TrendTick
event instances, computes latency, and displays dashboard information.

In the example, the file is called SignalgenOutputBean.java and is located in the
~/src/oracle/cep/example/signalgen directory.

For general information about programming event sinks, see Handling Events
with Sources and Sinks in Oracle Fusion Middleware Developing Application for
Oracle Event Processing .

Caution: This target overwrites the existing signal generation
application JAR file in the domain directory.

Event Record and Playback Example

Oracle Event Processing Samples 7-77

■ A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle Event Processing, see Overview of
Application Assembly and Deployment in Oracle Fusion Middleware Developing
Application for Oracle Event Processing .

■ A dashboard.html file in the main example directory; this HTML file is the
example dashboard that displays events and latencies of the running signal
generation application. The HTML file uses Dojo JavaScript libraries from
http://dojotoolkit.org/, located in the dojo directory.

For additional information about the Oracle Event Processing APIs referenced in
ForeignExchangeBuilderFactory, see Oracle Fusion Middleware Java API Reference for
Oracle Event Processing.

The signal generation example uses a build.xml Ant file to compile, assemble, and
deploy the OSGi bundle; see Section 7.9.2, "Build and Deploy the Signal Generation
Example from the Source Directory" for a description of this build.xml file if you also
use Ant in your development environment.

7.10 Event Record and Playback Example
The record and playback example shows how to configure a component to record
events to an event store and then configure another component in the network to
playback events from the store. The example uses the Oracle Event
Processing-provided default Berkeley database to store the events. The example also
shows how to configure a publishing HTTP pub-sub adapter as a stage in the event
processing network.

Figure 7–7 shows the event record and playback example Event Processing Network
(EPN). The EPN contains the components that make up the application and how they
fit together.

Figure 7–7 The Event Record and Playback Example Event Processing Network

The application contains four components in its event processing network:

■ simpleEventSource: an adapter that generates simple events for purposes of the
example. This component has been configured to record events, as shown in the
graphic.

The configuration source for this adapter is:

<adapter>
<name>simpleEventSource</name>
<record-parameters>

...
</record-parameters>

</adapter>

Event Record and Playback Example

7-78 Getting Started with Oracle Event Processing

■ eventStream: a channel that connects the simpleEventSource adapter and
recplayEventSink event bean. This component has been configured to playback
events.

The configuration source for this channel is:

<channel>
<name>eventStream</name>
<playback-parameters>

...
</playback-parameters>
...

</channel>

■ recplayEventSink: an event bean that acts as a sink for the events generated by
the adapter.

■ playbackHttpPublisher: a publishing HTTP pub-sub adapter that listens to the
recplayEventSink event bean and publishes to a channel called
/playbackchannel of the Oracle Event Processing HTTP Pub-Sub server.

7.10.1 Run the Event Record/Playback Example
The recplay_domain domain contains a single application: the record and playback
sample application. To run this application, you first start an instance of Oracle Event
Processing in the domain, as described in the following procedure.

The procedure then shows you how to use Oracle Event Processing Visualizer to start
the recording and playback of events at the simpleEventSource and eventStream
components, respectively. Finally, the procedure shows you how to use Oracle Event
Processing Visualizer to view the stream of events being published to a channel by the
playbackHttpPublisher adapter.

Run the event record/playback example:
1. Open a command window and change to the default server directory of the

recplay_domain domain directory, located in /Oracle/Middleware/my_oep/oep/
examples/domains/recplay_domain/defaultserver.

2. Start Oracle Event Processing by executing the appropriate script with the correct
command line arguments:

a. On Windows:

prompt> startwlevs.cmd

b. On UNIX:

prompt> ./startwlevs.sh

After the server starts, you should see the following message printed to the
output:

 SimpleEvent created at: 14:33:40.441

This message indicates that the Oracle Event Processing server started correctly
and that the simpleEventSource component is creating events.

3. Invoke the following URL in your browser:

http://host:port/wlevs

Event Record and Playback Example

Oracle Event Processing Samples 7-79

where host refers to the name of the computer on which Oracle Event Processing is
running and port refers to the Jetty NetIO port configured for the server (default
value 9002).

The Logon screen displays.

4. In the Logon screen, enter the Username oepadmin and Password welcome1, and
click Login.

The Oracle Event Processing Visualizer dashboard displays.

Event Record and Playback Example

7-80 Getting Started with Oracle Event Processing

5. In the left panel, select WLEventServerDomain > NonClusteredServer >
Applications > recplay > stages > simpleEventSource.

6. In the right panel, select the Record tab as follows:

The DataSet Name field contains the value of the record-parameters child
element dataset-name element from the simpleEventSource adapter application
configuration file /Oracle/Middleware/my_oep/examples/domains/recplay_
domain/defaultserver/applications/recplay/config.xml as Example 7–1
shows.

Event Record and Playback Example

Oracle Event Processing Samples 7-81

Example 7–1 recplay Application Configuration File config.xml: adapter Element

<adapter>
<name>simpleEventSource</name>
<record-parameters>

<dataset-name>recplay_sample</dataset-name>
<event-type-list>

<event-type>SimpleEvent</event-type>
</event-type-list>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>

</record-parameters>
</adapter>
7. At the bottom of the Record tab, click Start.

An Alert dialog displays.

8. Click OK.

The Current Status field reads Recording....

As soon as you click OK, events start to flow out of the simpleEventSource
component and are stored in the configured database.

You can further configure when events are recorded using the Start Recording and
Stop Recording fields.

9. In the left panel, select eventStream.

10. In the right panel, select the Playback tab as follows:

Event Record and Playback Example

7-82 Getting Started with Oracle Event Processing

11. At the bottom of the tab, click Start.

An Alert dialog appears as shown in Figure 7–8.

Figure 7–8 Start Playback Alert Dialog

12. Click OK.

The Current Status field reads Playing....

As soon as you click OK, events that had been recorded by the
simpleEventSource component are now played back to the simpleStream
component.

You should see the following messages being printed to the command window
from which you started Oracle Event Processing server to indicate that both
original events and playback events are streaming through the EPN:

SimpleEvent created at: 14:33:11.501
Played back: Original time=14:15:23.141 Playback time=14:33:11.657

You can further configure the playback parameters, such as the recorded time
period for which you want playback events and the speed that they are played
back, by updating the appropriate field and clicking Change Parameters. You
must restart the playback after changing any playback parameters.

Event Record and Playback Example

Oracle Event Processing Samples 7-83

13. To view the events that the playbackHttpPublisher adapter is publishing to a
channel, follow these steps:

a. In the top panel, select Viewstream.

The Viewstream window displays.

b. In the right panel, click Initialize Client.

c. In the Subscribe Channel text box, enter /playbackchannel.

d. Click Subscribe.

The Received Messages text box displays the played back event details. The
played back events show the time at which the event was created and the time at
which it was played back.

7.10.2 Build and Deploy the Event Record/Playback Example
The record and playback sample source directory contains the Java source, along with
other required resources, such as configuration XML file and EPN assembly file that
make up the application. The build.xml Ant file contains targets to build and deploy
the application to the signalgeneration_domain domain, as described in Section 7.10.3,
"Description of the Ant Targets to Build the Record and Playback Example."

Build and deploy the event record/playback example from the source directory:
1. If the record/playback Oracle Event Processing instance is not already running,

follow the procedure in Section 7.10.1, "Run the Event Record/Playback Example"
to start the server. You must have a running server to successfully deploy the
rebuilt application.

Event Record and Playback Example

7-84 Getting Started with Oracle Event Processing

2. Open a new command window and change to the record/playback source
directory, located in /Oracle/Middleware/my_oep/oep/examples/source/
applications/recplay.

3. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

4. Execute the deploy Ant target to deploy the application JAR file to the
/Oracle/Middleware/my_oep/examples/domains/recplay_
domain/defaultserver/applications/recplay directory:

prompt> ant -Dusername=oepadmin -Dpassword=welcome1 -Daction=update deploy

After an application redeploy message, you should see the following message
printed to the output about every second:

 SimpleEvent created at: 14:33:40.441

This message indicates that the record and playback example has been redeployed
and is running correctly.

5. Follow the instructions in Section 7.10.1, "Run the Event Record/Playback
Example," starting at step 4, to invoke Oracle Event Processing Visualizer and start
recording and playing back events.

7.10.3 Description of the Ant Targets to Build the Record and Playback Example
The build.xml file, located in the top-level directory of the record/playback source,
contains the following targets to build and deploy the application:

■ clean: This target removes the dist and output working directories under the
current directory.

■ all: This target cleans, compiles, and puts the application into a JAR file called
com.bea.wlevs.example.recplay_12.1.2.0_0.jar, and places the generated JAR
file into a dist directory below the current directory.

■ deploy: This target deploys the JAR file to Oracle Event Processing using the
Deployer utility.

For more information, see Oracle Fusion Middleware Administering Oracle Event
Processing.

7.10.4 Implementation of the Record and Playback Example
All the files of the example are located relative to the /Oracle/Middleware/my_
oep/examples/source/applications/recplay directory.

The files used by the record and playback example include:

■ An EPN assembly file that describes each component in the application and how
all the components are connected together as shown in Figure 7–7.

In the example, the file is called com.bea.wlevs.example.recplay-context.xml
and is located in the META-INF/spring directory.

■ Java source file for the simpleEventSource adapter.

Caution: This target overwrites the existing event record/playback
application JAR file in the domain directory.

Event Record and Playback Example

Oracle Event Processing Samples 7-85

In the example, the file is called SimpleEventSource.java and is located in the
~/src/com/bea/wlevs/adapter/example/recplay directory.

For a detailed description of how to program the adapter Java files in general, see
Overview of Custom Adapters in Oracle Fusion Middleware Developing
Application for Oracle Event Processing .

■ Java source file that describes the PlayedBackEvent and SimpleEvent event types.
The SimpleEvent event type is the one originally generated by the adapter, but the
PlayedBackEvent event type is used for the events that are played back after
having been recorded. The PlayedBackEvents look almost exactly the same as
SimpleEvent except they have an extra field, the time the event was recorded.

In the example, the two events are called SimpleEvent.java and
PlayedBackEvent.java and are located in the
~/src/com/bea/wlevs/event/example/recplay directory.

For a detailed description of this file, as well as general information about
programming event types, see Overview of Oracle Event Processing Event Types in
Oracle Fusion Middleware Developing Application for Oracle Event Processing .

■ A Java file that implements the recplayEventSink event bean of the application,
which is an event sink that receives both realtime events from the
simpleEventSource adapter as well as playback events.

In the example, the file is called RecplayEventSink.java and is located in the
~/src/com/bea/wlevs/example/recplay directory.

For more information about event sources and sinks, see Handling Events with
Sources and Sinks in Oracle Fusion Middleware Developing Application for
Oracle Event Processing .

■ An XML file that configures the simpleEventSource adapter and eventStream
channel components. The adapter includes a <record-parameters> element that
specifies that the component will record events to the event store; similarly, the
channel includes a <playback-parameters> element that specifies that it receives
playback events.

In the example, the file is called config.xml and is located in the
~/META-INF/wlevs directory.

■ A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle Event Processing.

In the example, the MANIFEST.MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle Event Processing, see Overview of
Application Assembly and Deployment.

The record/playback example uses a build.xml Ant file to compile, assemble, and
deploy the OSGi bundle; see Section 7.10.2, "Build and Deploy the Event
Record/Playback Example" for a description of this build.xml file if you also use Ant
in your development environment.

Event Record and Playback Example

7-86 Getting Started with Oracle Event Processing

Glossary-1

Glossary

Adapter

An element of the EPN that interfaces directly to an inbound event source. Adapters
understand the inbound protocol, and are responsible for converting the event data
into a normalized form that can be queried by a POJO. Adapters forward the
normalized event data into a Stream.

Aggregate Function

Aggregate functions return a single aggregate result based on group of tuples, rather
than on a single tuple.

See also Function and Single-Row Function.

OEP

Oracle Event Processing.

Channel

A channel represents the physical conduit through which events flow between other
types of components, such as between an Adapter and a Processor, and between a
Processor and an Event Bean. A channel can model a Stream or Relation.

Condition

An Oracle CQL condition specifies a combination of one or more expressions and
logical (Boolean) operators and returns a value of TRUE, FALSE, or UNKNOWN.

Constant value

A fixed data value. Synonymous with Literal.

CQL

Oracle Continuous Query Language. Supersedes EPL.

Data Feed

A synonym for Event Source.

Destination

An Oracle CQL destination identifies a consumer of query results such as the
Enterprise Link BAM Adapter, JMS queue or topic, or file.

Deterministic Garbage Collection

Glossary-2

Deterministic Garbage Collection

Short, predictable pause times for memory heap garbage collection, which is the
process of clearing dead objects from the heap, thus releasing that space for new
objects.

DStream

A relation-to-stream operator that represents deleted tuples.

EDA

Event-Driven Architecture.

EPL

Oracle Event Processing Language. Superseded by CQL.

EPN

Oracle Event Processing Network. An EPN is the arbitrary interconnection of Adapter,
Stream, POJO, and business logic POJOs used by Oracle Event Processing to process
events.

Event Bean

A POJO to that contains the business logic executed when a notable event is detected.
An event bean is an Event Sink.

Event Rule

A query, expressed in CQL or EPL, executed by a POJO to filter and aggregate events.

Event Sink

A component that consumes events, such as a Processor.

See also Event Source.

Event Source

A component that provides events, such as a sensor, wire service, or stock ticker.

See also Data Feed and Event Sink.

Expressions

An Oracle CQL expression is a combination of one or more values, operators, and
Oracle CQL functions that evaluates to a value. An expression generally assumes the
data type of its components.

See also Condition and Function.

Format model

A character literal that describes the format of date-time or numeric data stored in a
character string.

Function

Oracle CQL functions are similar to operators in that they manipulate data items and
return a result. Functions differ from operators in the format of their arguments. This
format enables them to operate on zero, one, two, or more arguments.

See also Condition, Aggregate Function, and Single-Row Function.

Partitioned window

Glossary-3

Incremental Processing

A user-defined aggregate function design pattern that improves scalability and
performance by ensuring that the cost of (re)computation on arrival of new events will
be proportional to the number of new events as opposed to the total number of events
seen thus far.

If your user-defined aggregate function supports incremental processing, you specify
the supports incremental processing clause in the register function
statement to instruct the Oracle Event Processing Service Engine to supply only the
new event data as opposed to performing a rescan over already processed event data.

IStream

A relation-to-stream operator that represents inserted tuples.

Join

A query that combines rows from two or more streams, views, or relations.

Latency

An expression of how much time it takes for data to get from one designated point to
another.

Literal

A fixed data value. Synonymous with Constant value.

Monotonic

A sequence of values that are consistently increasing and never decreasing or
consistently decreasing and never increasing. The sequence may contain multiple
consecutive occurrences of the same value.

Now window

A special case of the time-based sliding window on a stream S that takes a
time-interval T as a parameter and is specified by: S [Range T]. A Now window is
defined as: S [Now] (short for S [Range 0]). When T = 0, the relation at time t
consists of tuples obtained from elements of S with timestamp t.

See also Sliding window.

Operators

Oracle CQL operators manipulate data items and return a result. Syntactically, an
operator appears before or after an operand or between two operands.

OSGi

A dynamic module system for Java that provides a service-oriented, component-based
environment and standardized software life cycle management. Oracle Event
Processing applications are packaged and deployed as OSGi bundles. For more
information, see http://www.osgi.org/.

Partitioned window

A partitioned sliding window on a stream S takes a positive integer number of tuples
N and a subset {A1,... Ak} of the stream's attributes as parameters and is specified
by: S[Partition By A1 ... Ak Rows N] or, optionally, S[Partition By A1
... Ak Rows N Range T].

See also Sliding window.

POJO

Glossary-4

POJO

A Plain Old Java Object. A Java class that is not required to implement a third-party
interface or extend a third-party class. In Oracle Event Processing, you can express
your business logic using POJOs.

Processor

An element of the EPN that consumes normalized event data from a stream, processes
it using queries (expressed in CQL or EPL), and may generate new events to an output
stream.

Query

A query is an operation that retrieves data from one or more streams or views. In this
reference, a top-level SELECT statement is called a query.

Real-time

A level of computer responsiveness that a user senses as sufficiently immediate or that
enables the computer to keep up with some external process (for example, to present
visualizations of the weather as it constantly changes).

Relation

A relation is time-varying bag of tuples. Here time refers to an instant in the time
domain. At every instant of time, a relation is a bounded set. It can also be represented
as a sequence of times tamped tuples that includes insertions, deletions, and updates
to capture the changing state of the relation. The updates are required to arrive at the
system in the order of increasing timestamps. Like streams, relations have a fixed
schema to which all tuples conform.

RStream

A relation-to-stream operator that maintains the entire current state of its input
relation and outputs all of the tuples as insertions at each time step.

Single-Row Function

Single-row functions return a single result row for every row of a queried stream or
view.

See also Function and Aggregate Function.

Sliding window

A stream-to-relation operator based on the window specification derived from SQL99.

See also: Now window, Partitioned window, Unbounded window, tuple-based, and
Unbounded window, time-based.

Source

An Oracle CQL source identifies a producer of data that a Oracle CQL query operates
on such as the Enterprise Link BAM Adapter, JMS queue or topic, or file.

Spring Framework

A light-weight, open source application framework for Java. Oracle Event Processing
server uses the Spring Framework to host Oracle Event Processing applications. For
more information, see http://www.springframework.org/.

View

Glossary-5

Stream

A stream is a sequence of times tamped tuples. There could be more than one tuple
with the same timestamp. The tuples of an input stream are required to arrive at the
system in the order of increasing timestamps. A stream has an associated schema
consisting of a set of named attributes, and all tuples of the stream conform to the
schema.

A stream is a bag (or multi-set) of tuple-timestamp pairs, which can be represented as
a sequence of times tamped tuple insertions.

In Oracle Event Processing, a stream is modeled as a channel component.

See also Tuple and Channel.

Throughput

An Oracle CQL source identifies a producer of data that a Oracle CQL query operates
on such as the Enterprise Link BAM Adapter, JMS queue or topic, or file.

Tuple

The phrase tuple of a stream denotes the ordered list of data (excluding timestamp data)
portion of a stream element (the s of <s,t>). For example, a stock ticker data stream
might appear like this where each stream element is made up of <timestamp
value>, <stock symbol>, and <stock price>:

...
<timestampN> NVDA,4
<timestampN+1> ORCL,62
<timestampN+2> PCAR,38
<timestampN+3> SPOT,53
<timestampN+4> PDCO,44
<timestampN+5> PTEN,50
...

In the stream element <timestampN+1> ORCL,62, the tuple is ORCL,62.

See also Stream.

Unbounded window, time-based

A special case of the time-based sliding window on a stream S that takes a
time-interval T as a parameter and is specified by: S [Range T]. An Unbounded
window is defined as: S [Range Unbounded] (short for S [Range infinity]).
When T = infinity, the relation at time t consists of tuples obtained from all
elements of S up to t.

See also Sliding window.

Unbounded window, tuple-based

A special case of the tuple-based sliding window on a stream S that takes a number of
tuples N as a parameter and is specified by: S [Rows N]. An Unbounded window is
defined as: S [Rows Unbounded] (short for S [Rows infinity] and equivalent
to S [Range Unbounded]). When T = infinity, the relation at time t consists of
tuples obtained from all elements of S up to t.

See also Sliding window.

View

An Oracle CQL view represents an alternative selection on a stream or relation. In
Oracle CQL, you use a view instead of a subquery.

View

Glossary-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	1 Oracle Event Processing Overview
	1.1 Oracle Event Processing
	1.2 Application Programming Model
	1.3 Component Roles in an Event Processing Network
	1.4 Oracle CQL
	1.5 Technologies in Oracle Event Processing
	1.6 Oracle Event Processing High-Level Use Cases

	2 Oracle JDeveloper Quick Reference
	2.1 Setting Accessibility Options
	2.2 Oracle Event Processing Support
	2.3 Open Oracle JDeveloper Windows
	2.4 Create an Oracle Event Processing Project
	2.5 Project Templates
	2.6 Assembly and Component Configuration Files
	2.7 Set the Path to Project Source Files
	2.8 Perform Project-Level Actions
	2.9 Import a Zip or JAR file
	2.10 EPN Diagram Features
	2.11 Components Window
	2.12 Context Menus

	3 Oracle JDeveloper Procedures
	3.1 Import an Eclipse Project into Oracle JDeveloper
	3.2 Add a Library to a Project
	3.3 Create an Application Library
	3.4 Assembly and Configuration Files
	3.4.1 Create an Assembly File
	3.4.2 Create a Component Configuration File
	3.4.3 Add Components to a Configuration File
	3.4.4 Add Configuration Settings to a Component

	3.5 Configure a Relation Channel
	3.6 Configure an Application Time-Stamped Channel
	3.7 Create and Register a JavaBean Event Type
	3.8 Create and Register a Tuple Event Type
	3.9 Create an Event Bean
	3.10 Create a Spring Bean
	3.11 Configure a Table Source
	3.12 Configure a Table Sink
	3.13 Use Oracle CQL Patterns
	3.14 Configure an Oracle Coherence Caching System and Cache
	3.15 Configure a Local Caching System and Cache
	3.16 Debug Java Classes
	3.16.1 Debug on a Local Oracle Event Processing Server
	3.16.2 Remote Oracle Event Processing Server

	3.17 Testing with the Event Inspector Service
	3.18 Start and Stop Oracle JDeveloper and Servers

	4 Create a Basic Application
	4.1 About the Basic Application
	4.2 Before You Begin
	4.3 Create the Application
	4.4 TradeReport Project Files
	4.5 Create an Event Type to Carry Event Data
	4.6 Add the csvgen Adapter to Receive Simulated Event Data
	4.7 Add an Output Channel to Convey Events
	4.8 Create a Listener Event Sink to Receive and Report Events
	4.9 Add an Oracle CQL Processor to Filter Events
	4.10 Add an Output Channel
	4.11 Deploy
	4.12 Set Up and Start the Load Generator
	4.13 Stop the Load Generator and the Server

	5 Create a Fraud Detection Application with EDN Adapters
	5.1 Fraud Detection Scenario
	5.2 Before You Begin
	5.3 Event Delivery Network Walkthrough
	5.3.1 Start Oracle WebLogic Server
	5.3.2 Copy the Artifacts Folder
	5.3.3 Create an Oracle Event Processing Domain
	5.3.4 Create a Java Message Service Topic
	5.3.5 Start the Oracle Event Processing Server
	5.3.6 Use Oracle JDeveloper to Create An Oracle Event Processing Application
	5.3.7 Deploy the Application with JDeveloper
	5.3.8 Create and Deploy the Sample SOA Composite
	5.3.9 Test the Fraud Detection Application

	6 Create an Order Tracking Application with QuickFix Adapter
	6.1 Order Tracking Example Application
	6.2 Test the Example Application

	7 Oracle Event Processing Samples
	7.1 About the Samples
	7.1.1 Ready-to-Run Samples
	7.1.2 Sample Source

	7.2 Environment Setup
	7.3 Use Oracle Event Processing Visualizer with the Samples
	7.4 Increase the Performance of the Samples
	7.5 HelloWorld Example
	7.5.1 Run the HelloWorld Example from the helloworld Domain
	7.5.2 Build and Deploy the HelloWorld Example from the Source Directory
	7.5.3 Description of the Ant Targets to Build Hello World
	7.5.4 Implementation of the HelloWorld Example

	7.6 Oracle Continuous Query Language Example
	7.6.1 Run the CQL Example
	7.6.2 Build and Deploy the CQL Example
	7.6.3 Description of the Ant Targets to Build the CQL Example
	7.6.4 Implementation of the CQL Example
	7.6.4.1 Create the Missing Event Query
	7.6.4.2 Create the Moving Average Query

	7.7 Oracle Spatial Example
	7.7.1 Run the Oracle Spatial Example
	7.7.2 Build and Deploy the Oracle Spatial Example
	7.7.3 Description of the Ant Targets to Build the Oracle Spatial Example
	7.7.4 Implementation of the Oracle Spatial Example

	7.8 Foreign Exchange (FX) Example
	7.8.1 Run the Foreign Exchange Example
	7.8.2 Build and Deploy the Foreign Exchange Example from the Source Directory
	7.8.3 Description of the Ant Targets to Build FX
	7.8.4 Implementation of the FX Example

	7.9 Signal Generation Example
	7.9.1 Run the Signal Generation Example
	7.9.2 Build and Deploy the Signal Generation Example from the Source Directory
	7.9.3 Description of the Ant Targets to Build Signal Generation
	7.9.4 Implementation of the Signal Generation Example

	7.10 Event Record and Playback Example
	7.10.1 Run the Event Record/Playback Example
	7.10.2 Build and Deploy the Event Record/Playback Example
	7.10.3 Description of the Ant Targets to Build the Record and Playback Example
	7.10.4 Implementation of the Record and Playback Example

	Glossary

